Int J Fract (2016) 202:167-177
DOI 10.1007/s10704-016-0118-6

@ CrossMark

ISDMM15

Thermal shock driven fracture in a structured solid:
dynamic crack growth and nucleation

A. Trevisan - G. P. Borzi - N. V. Movchan -
A. B. Movchan - M. Brun

Received: 10 December 2015 / Accepted: 3 May 2016 / Published online: 6 June 2016

© Springer Science+Business Media Dordrecht 2016

Abstract In this paper we analyse the propagation of
an edge crack into a thermoelastic lattice. The prop-
agation within the micro-structured medium is driven
by a periodic thermal shock acting on the boundary
of the structure. A non standard numerical simulation
has been developed which automatically computes the
transient crack advance, embedding into the analysis
thermal and inertial effects together with the non-linear
evolution of the micro-structure. Velocity of propaga-
tion is considered for different critical elongation of
the elastic ligaments within the lattice and the results
are found to be in agreement with previous analytical
predictions based on the dispersion properties of the
lattice. Nucleation and coalescence are also detailed.
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1 Introduction

Dynamic fracture in lattice structures is an impor-
tant area which has attracted attention of physicists
and mathematicians, and a large bulk of literature,
both experimental and theoretical, has been published
on this topic. In particular, the role of dynamic frac-
ture and crack growth instabilities are of high inter-
est, as highlighted by the Nature paper (Buehler et al.
2003). Among important theoretical developments we
cite the monograph (Slepyan 2002), which proposed
a novel approach based on mathematical formulation
of the Wiener—Hopf type developed specifically for
two-dimensional lattices. This work has also led to
an advanced concept of the energy dissipation linked
to fracture and waves initiated by broken lattice links
at the vertex of the crack. Advanced approach to
modelling high-speed cracks in lattices and analysis
of effects of hyperelasticity were developed in Gao
(2001).

The recent work (Carta et al. 2013) has proposed
a semi-analytical approach treating a dynamic crack
propagating in a thermo-elastic lattice subjected to ther-
mal shocks. This follows the earlier works (Jones 1999,
2005, 2006) who studied the phenomenon of thermal
striping, which is linked to the growth of surface break-
ing thermal cracks, and was motivated by the neces-
sity to assess damage in the cooling contour of nuclear
power plants. The asymptotic and numerical study of
a surface breaking crack under the transient thermal
loading was published in Movchan and Jones (20006).
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Analytical model based on the Wiener—Hopf formula-
tion to describe propagation of the Slepyan crack in a
non-uniform elastic lattice has been presented in Nieves
etal. (2013).

We note that transient fracture in structured solids
is an exceptionally challenging topic, especially in
the multi-physics framework, which couples physical
fields of different nature. This topic is addressed in the
present paper, in the framework of the approach, used
in the earlier publication (Carta et al. 2013). Thermal
shocks occur on the boundary of a structured elastic
solid, which in turn supports propagation of a transient
crack. The simulation gives the description of the tran-
sient regimes as well as instabilities leading to nucle-
ation of micro-cracks.

In the present paper, an industrial grade FEM model
has been developed for thermal shock driven frac-
ture, with the emphasis on the crack nucleation in the
dynamic regime. The analytical inspiration for this pub-
lication comes from the earlier works (Carta et al. 2013;
Jones 1999, 2005, 2006; Movchan and Jones 2006;
Colquitt et al. 2012). The ANSYS code is entirely orig-
inal, and it fully implements transient fracture algo-
rithm, that involves breakages of bonds in an elastic
lattice and resetting local initial conditions and each

reloading step. Similar to Carta et al. (2013) a com-
parison is drawn to an averaged steady crack prop-
agation, which has been studied in detail in Nieves
et al. (2013). An illustration of a dynamic fracture
nucleation, obtained from the computation, is given
in Fig. 1, where the displacement map is presented
around the moving crack, and the nucleated micro-
crack is clearly identified. The part (a) of this figure
shows a single crack, without a nucleation; in part (b)
a small crack nucleates ahead of the main crack; the
nucleation progresses by the growth of the small crack,
as shown in the part (c); finally two cracks coalesce
into a single crack as presented in part (d). The dis-
placement colour map, presented in this figure, also
shows a trace of an elastic wave propagating along
the crack and interacting with the micro-structure as
well as with the secondary crack. These effects have
a significant contribution to the average speed of the
crack and to its critical length, as discussed in the main
text.

The structure of the manuscript is as follows. Sec-
tion 2 presents formulation of the problem and intro-
duces main notations. The results of transient simula-
tions of the crack growth are discussed in Sect. 3. In
particular, we highlight comparison with the analytical

Nucleation

Crack propagation
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(c) Nucleation growth
- T

Fig. 1 Dynamic crack propagation and nucleation. The nor-
malised radian frequency of the applied load is o = /32,
with the relative critical elongation of Al; /I = 0.004. Computa-
tional results are presented for the crack advancing dynamically
through the lattice: a the normalised displacement colour map
for an advancing crack prior to a nucleation; b the nucleation
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has occurred—a small secondary crack has been formed ahead
of the main crack; ¢ the dynamic growth of the secondary crack
is observed; d coalescence of the main and the secondary crack
into a single crack, which continues to propagate dynamically
through the lattice
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prediction of the crack growth rate for different loading
regimes and lattice parameters and we address nucle-
ation formation and growth. Section 4 describes the
computational finite element ANSYS model. Finally,
Sect. 5 presents concluding outline.

2 Theoretical background

This study reveals new features of thermally driven
fracture that takes into account dynamic effects. A
multi-physics formulation includes a parabolic equa-
tion for the temperature and a hyperbolic system
describing elastic waves. Several dynamic regimes of
the thermal crack growth in a lattice structure are iden-
tified. Special attention is given to the effect of fracture
nucleation during the growth of the crack. The sam-
ple geometry is shown in Fig. 2, where we depict a
triangular elastic lattice occupying a half-plane. Plane
strain loading conditions are assumed, and a time peri-
odic distribution of temperature T, is set on the left
boundary y;.

A system of short-duration thermal pulses drives an
elastic wave away from the boundary, and a fracture
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Fig. 2 Semi-infinite triangular lattice with a finite edge crack
of initial length L. The crack grows dynamically and its length
L is evaluated as the distance from y; to the intersection of the
symmetry line (the dashed dotted line) with the first unbroken
ligament (centroid)

criterion, based on the critical elastic elongation of the
ligaments is employed in the computations.

The theoretical background for the current formula-
tion has been developed in Carta et al. (2013), and the
related dynamic analysis of a crack propagating in a dis-
crete infinite lattice was presented in Slepyan (2002)
and Nieves et al. (2013). The continuum model of
dynamic thermal crack growth, also known in the liter-
ature as “thermal striping”, was analysed by Movchan
and Jones (2006), while a substantial analysis of ther-
mal striping for the cases of time-periodic thermal load-
ing and non-inertial elastic solid was published in Jones
(1999, 2005, 2006).

In the regimes chosen here, the lattice distribution
of the temperature is well-described by the continuum
homogenized model, which is analysed in detail in
Carta et al. (2013).

The time-periodic temperature 7' (x1, ¢) in the half-
plane can be evaluated analytically for the continuum
case, and the solution in the steady-state regime is given
by

oo

TG, 0= T (gmindr _ 1)

2nm
n=—0oo

|nw\

xe = [1+sgn(n)i] XIelnwt, (1)

where @ is the radian frequency of the applied load
and the other quantities are indicated in Eq. (3) and in
Table 1.

Rapid variation of the boundary temperature leads
to formation of propagating elastic waves away from
the boundary. Elastic deformations within the triangu-
lar lattice are computed numerically, according to the
governing equations:

> N(p)
> {ay - [0 + g, H) — G(p, )}

n=lI
272 N(p) ) )
+ 5T 2T (@, ) = T(p, Dlan)
n=1

forf > 0, ()

a(p. 1) Pt
arz 2

where [ is the distance between the nearest nodal points,
¢ = l/un/m, with u being the stiffness of an elemen-
tary ligament and m being the mass placed at nodal
points of the triangular lattice. In Eq. (2) u is the dis-
placement, p a nodal point and q, one of the N(p)
adjacent nodal point. The other quantities are indicated
in Eq. (3) and in Table 1.
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Table 1 Constant and variables considered in the numerical
problem

l Link length 1 (m)

A Link cross section area 1 (m?)
" Link stiffness 1 (N/m)
E Young modulus 1 (Pa)

v Poisson ratio 0.3

m Node mass 1000 (kg)

o Coefficient of thermal expansion 0.001 cch
K Lattice thermal diffusivity 1 (m? /s)
K* Continuum thermal diffusivity 1/3/3 (m?/s)
Lo Initial crack length 4 (m)

t Time Variable  (s)

T Thermal impulse duration Variable  (s)

0 Period of thermal load Variable  (s)

Variable (°C)
To Amplitude of imposed temperature  —10 °O)
I; Thermal length 1 (m)
Variable (m)

Tex; Imposed boundary temperature

Al;  Critical elongation

Here we use the normalized variables (indicated
with the “hat” symbol), with the normalization chosen
as follows

(X’ u, Ba H5 L07L5 L*’ Alv Alla gl:)

(1,0, %) :T(f,é, é), v=cl; o= $d;
(Tv Tcw Tref7 é) = TO (f, fc» frefv é . (3)

The notation @ is used for the radian frequency of the
applied thermal load, i.e. ® = 2n/6, and 0=1d =
2’;—’, where 7 stands for the duration of the thermal
pulse, as illustrated in Fig. 9. The system is supplied
with the initial conditions:

. 9
i(x, 0) = d(x), a—”t‘(x, 0) = ¥(x), )

where the choice of functions ® (x) and W (x) is defined
on every iteration of the transient process, following the
evolution of the crack propagation as ligaments of the
lattice break. At the start of the numerical procedure,
these functions are chosen to be zero.
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3 Transient crack growth

Floquet waves in an elastic triangular lattice with the
boundary along a half-plane possess well-known dis-
persion properties, discussed in details in Carta et al.
(2013), Colquitt et al. (2012), Nieves et al. (2013),
Slepyan (2001, 2002), Mishuris and Slepyan (2014),
Ayzenberg-Stepanenko et al. (2014). In these papers
it has been demonstrated that for functional equations
of the Wiener—Hopf type, which describe propagation
of a semi-infinite crack through an infinite lattice, the
kernel function contains all the information about dis-
persion properties of the Floquet waves that may exist
in the corresponding periodic lattice.

Finite Element computations are based on an iter-
ative algorithm which uses a positive parameter Al
characterising a critical elastic elongation of a ligament
of the triangular lattice: when such critical elongation is
exceeded the ligament breaks and is removed from the
lattice and a new step is started in the numerical compu-
tations. The algorithm corresponds to a fully dynamic
transient fracture process in subsonic regime.

3.1 The boundary layer regimes and dynamic fracture
implications

In the regimes of the rapid change of the temperature
at the boundary, there is a well identified boundary
layer, dominated by the temperature fluctuation. In that
region, the total deformation is dominated by the ther-
mal term. In turn, the rapid change in temperature leads
to a formation of an elastic wave propagating away
from the boundary of the half-plane. The crack propa-
gates at a high speed in the small region adjacent to the
boundary, and then the crack speed is reduced, while
the magnitude of the crack velocity is determined by
the applied load which generates an elastic wave.

We note that the normalised frequency @ influences
the width of the thermal boundary layer and hence the
duration of the transition process when the crack is
accelerating and the propagation is not steady. In Fig. 4
we show that for @ = 7 /16 the boundary layer regime
is negligibly small, while for w=r /32 and w=r /64
the transition boundary layer regime exists in both cases
and its duration is different, as can be clearly seen in
Figs. 5 and 6.

The transient problem, involving a threshold critical
elongation, is non-linear. Consequently, the failure cri-
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Fig. 3 Dispersion diagram 25~ @ N
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terion based on the evaluation of the critical elongation
may not lead to bond breakage during the first iteration
and more than one successive cycles may be required
before the critical elongation is reached and hence the
bond breaks.

3.2 Dynamic crack growth for different durations of
periodic pulses

We identify an “average” crack speed, as the crack tip
moves sufficiently far away from the thermally loaded
boundary. Compared to the propagation in the ther-
mally dominant region adjacent to the boundary, the
motion of the crack away from the boundary is driven
by elastic waves induced by the thermal shock and
the breakages of ligaments of the lattice. In turn, the
average crack speed is compared with the analytical
findings of Carta et al. (2013), Colquitt et al. (2012)
and Nieves et al. (2013). We also note that in the cur-
rent computations, the critical elongation criterion is
applied to the elastic deformation, rather than the total
deformation field used in Carta et al. (2013).

3.2.1 Characteristic wave speeds
The dispersion relations for the waves in a triangular

lattice, associated to a Mode-I fracture, are well-known
(see, for example, Slepyan 2001):

4 6 5/71_8

oy = \/3 — cos(§/2) —2cosé
(for longitudinal waves), (®)]

Wy = NG cos(é /4) (for shear waves, also known

as an “optical” branch), (6)

Wr =13 — \/§| sin(§/4)| (for Rayleigh waves).

(N
The “effective speeds” ¢, ¢y, cg, for the longitudi-
nal, shear and Rayleigh waves in the triangular lat-
tice are given by ¢, = ¢/9/8,¢s = ¢/3/8, cg =
$V3 - V3.

Figure 3, which shows the dispersion curves (5)—(7),
gives the valuable information extracted from the ker-
nel function of the Wiener—Hopf equation, characteris-
ing a Mode-I propagation of a brittle crack in a triangu-
lar linear lattice (Slepyan 2001). Apparently, the roots
and poles of the kernel function give the curves which
are identical to the dispersion curves (for the appropri-
ate symmetry modes) in the infinite discrete structure.
In particular, for the Mode-I fracture the above figure
shows the dispersion curves for the longitudinal waves
as well as Rayleigh waves (as a free boundary along the
crack is being formed as the crack propagates along the
x1-axis). Understandably, there is also a higher-order
mode (“optical” branch in Solid State Physics terms)
also representing the shear waves in the homogenised
lattice.
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The diagram of Fig. 3 also gives a valuable informa-
tion about the waves generated by a propagating crack
in the lattice. To do that, we need to choose a slope
of a ray, which corresponds to the crack speed, and
then look for intersections with the dispersion curves at
points corresponding to a positive group velocity. The
vertical coordinate of such an intersection point will
immediately give the frequency of the wave emanating
away from the crack.

The admissible values of average crack speeds 0 for
given frequencies have been evaluated according to the
method (Slepyan 2002). For the purpose of the illustra-
tion, we show these values as slopes of dashed lines in
Fig. 3. The crack speed is defined by the slope of the
rays containing the points of intersection of the lines
@ with the parts of the dispersion curves that corre-
spond to a positive group velocity. The number of such
rays is infinite, as they are identified by the intersection
between the dispersion curves and the horizontal line
@ = const, which corresponds to the normalised radian
frequency of the forcing temperature 7.

We note that the critical elongation Al; used in this
paper as failure criterion is the elastic critical elonga-
tion rather than total elongation that includes thermal
expansion as well.

Comparative analysis of step-like advance of the
crack is presented in Figs. 4, 5 and 6, for different

Fig. 4 Crack lengths versus 60
time for @ = 7 /16.

Different continuous black a: Al, = 0.004 1
curves correspond to - b: Al = 0.005
different critical elongation ° o2 i 00004

d: Al = 0.007 1
Al;. The slopes of dashed e: AL = 0.008 1
straight lines show the £: Al, = 0.009 /

admissible crack speed in 40
the analytical model, solved

by the Wiener—Hopf method

(Slepyan 2001), as

illustrated in Fig. 3 30

20

10

duration of the pulse 271/5) and for different values
of critical elongation Al;. The crack tip position as a
function of time is shown with solid curves in Fig. 4,
and these are characterised both by jumps (due to the
nucleation and successive merging of voids) and by
segments between jumps (corresponding to uniform
progression of the crack tip). The slopes of dashed grey
lines represent the admissible speeds of the crack prop-
agating through the lattice (as in Fig. 3). While Fig. 4
was constructed for the case of @ = 7 /16, the other
Figs. 5 and 6 include computations for smaller val-
ues of the normalised radian frequency @ = /32 and
0 /64. As demonstrated in Fig. 3, the admissi-
ble crack speeds change with the decrease of the fre-
quency, i.e. the steady crack is expected to “slow down”
as the value of frequency of the applied external load
decreases.

The solid lines, of stair-like shape, shown in Figs. 4,
5 and 6 show the position of the crack tip as a func-
tion of time. It is noted that the crack may acceler-
ate in the region adjacent to the boundary (as in Figs.
5, 6), where the thermal boundary layer is important
and the stress concentration is high, and then the crack
attains a regime, which can be referred to as a steady
regime in the context of the averaged crack behaviour.
In the non-linear regime, where the failure occurs when
a lattice ligament reaches the critical elongation, the

w =

0 10

@ Springer

20

30 40 50 60 70



Thermal shock driven fracture in a structured solid

173

Fig. 5 Crack lengths versus
time for @ = 7/32.
Different continuous black
curves correspond to
different critical elongation
Al;. The slopes of dashed
straight lines show the
admissible crack speed in
the analytical model, solved
by the Wiener—Hopf method
(Slepyan 2001)

Fig. 6 Crack lengths versus
time for & = 7 /64.
Different continuous black
curves correspond to
different critical elongation
Al;. The slopes of dashed
straight lines show the
admissible crack speed in
the analytical model, solved
by the Wiener—Hopf method
(Slepyan 2001)
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crack speed increases when the critical elongation is
decreased, while the average speed agrees with one of
the admissible crack speeds obtained from the analyti-
cal linearised model of a steady crack in a lattice.

For high frequencies, within the stop band, there
is no wave propagation and thus there is no energy
brought by elastic waves to the crack tip. Hence the

crack propagation is suppressed in the high frequency
regime.

3.3 Crack nucleation in the lattice
In the earlier papers (Carta et al. 2013; Jones 1999,

2005, 2006), concerned with the thermal striping phe-
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Fig. 7 Nucleation diagram
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nomenon in elastic lattices, nucleation of the propa-
gating crack was not considered. Nevertheless, crack
nucleation was the subject of extensive discussions in
other publications (Gao 2001).

In Fig. 1 we show an illustration of a non-linear
dynamic crack driven by an external time harmonic
load at the normalised radian frequency of o= /32,
with the relative critical elongation chosen as Al; /[ =
0.004. A small secondary crack is shown to form ahead
of the main crack. This process is followed by the
growth of the secondary crack and further by the coa-
lescence of the main and of the secondary crack. This
leads to the change in the average crack speed as dis-
cussed in the text below.

Additional description of the nucleation process is
given in Figs. 7 and 8. In this case, on each time step
where there is a breakage at the crack tip, we note the
number of the link that has been broken, which is rep-
resented by a dot on the diagrams mentioned. In par-
ticular, the length of the crack is defined as the length
of the main crack (even in the case when a secondary
crack has been formed). Figure 7 presents the evolu-
tion of the crack for ® = /32, and for critical elon-
gation Al;/I = 0.004. This diagram shows that during
the breakage of bonds, nucleation occurs after the 24th
time step. We can also see that this phenomenon persists
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Time step sequence

until crack stops (the right part of the diagram). Fur-
ther multiple nucleations occur as the crack advances
further into the lattice.

In Fig. 8, that is representative of the normalised
frequency @ = /32 and a higher critical elonga-
tion Al;/I = 0.006, we can see that nucleation is not
present (absence of gaps). This illustration suggests
that nucleation is a dynamic phenomenon, strongly
dependent on the critical elongation value for bonds
of the lattice. In particular, when this critical value
increases, i.e. the lattice becomes more resistant to
fracture, nucleation disappears. Furthermore, the crack
may stop propagating when the resistance of the bonds
is sufficiently high.

4 Computational model
4.1 Constants, variables, units of measure

In order to implement the numerical model the neces-
sary physical constants and variables have been consid-
ered with their associated units of measure, as shown
in Table 1. In particular, the International System of
Units (SI) has been considered. For temperatures the
degree Celsius (°C) has been chosen. Where specified,
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numerical values have been normalized as described
previously [see Eq. (3)].

The quantity «* is the homogenised thermal diffu-
sivity of the continuum, and it is related to the one of
the lattice as k = «*+/3.

ANSYS was used as FEM computational environ-
ment.

4.2 Temperature function

The temperature imposed on the boundary (x; = 0) of
the lattice is assumed to be uniform in the x;-direction,
and it is represented by a time-periodic series of rec-
tangular pulses as shown in Fig. 9:
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Text(t) = Text(oa t)
00

= ZTO[H(I —nf)—H(@—nb —1)]. (8)
n=0

Here ¢ denotes time, t is the duration of each pulse,
0 is the time interval between two consecutive pulses,
H (-) represents the Heaviside step function and 7y is
the maximum value of the applied temperature. It is
also assumed that 6 = 4t. Without loss of generality,
the technique discussed here applies to other relations
between 6 and t.

Heat flows through the lattice by means of ther-
mally conducting ligaments. The variation of temper-
ature produces strains (both elastic and thermal) in the
ligaments, and stresses. It is important to point out that
only elastic strains ¢,; induce stress and these are used
on the iterative procedure to define whether the link is
broken or not. The resulting stress field is amplified by
the elastic waves generated at the boundary due to the
rapid variations in temperature.

The temperature variation in the links is introduced
into ANSYS in the form

T(xl,l)
= ZTO [erfc [ZW} H(t —no)
—erfc[ 1 :|H(t—n6—r)],
2/Kk*(t —nb — 1)

©)
which is the solution of the heat conduction prob-
lem in a semi-infinite continuum of thermal diffu-
sivity «*, with a perfectly thermally-conducting edge
crack, exposed to the boundary temperature 7o, (t)
[Eq. (8)] shown in Fig. 9. The temperature (9) satis-
fies the boundary condition given in Eq. (8).
The function T (x1, ) has been implemented within
Scilab code and has been evaluated in tabular form in
the domain D, where:

={0<x <80;0<t<607}.

The sampling points (x1, ) have been chosen with
a x1 spacing of 0.1 length units and a time spacing dt=
0.0257. Convergence studies have been carried out in
order to show that 0.0257 is sufficiently small to get
accurate results.

The forcing temperature function 7,y has been con-
sidered for different values of @. Table 2 shows the dif-
ferent values of @ considered in calculations, as well
as the respective values of t and 6.
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Table 2 The values of & and pulse durations considered in cal-
culations

N

7} T (s) 6 =4t (s)
/16 8 32
/32 16 64
/64 32 128

5 Concluding remarks

Thermal crack propagation in a homogeneous elastic
triangular lattice excited by periodic thermal pulses has
been studied under the assumption of transient regime.
Inertia contribution permits to take into account the
effect of elastic waves generated by the steep gradient
of the boundary temperature. Three different durations
of the pulse of the forcing external temperature were
considered.

A numerical 2-D model has been developed with
ANSYS finite-element code in order to analyse how an
existing crack propagates along a specific crack path in
the lattice. The problem is non-linear, so a specific solu-
tion routine has been developed to solve the problem
for a given configuration and to automatically remove
the broken ligaments.

Results are presented for a range of lattice parame-
ters, and the progress was facilitated by the advanced
numerical technique implemented in the ANSYS frame-
work; in selected particular cases the results are in
accordance with trends highlighted in Carta et al.
(2013); additionally, the dynamic nucleation has been
simulated here and discussed in the context of the lat-
tice fracture.

In the overall range of duration of the pulse con-
sidered, it has been noted that the crack tip does not
move uniformly in the lattice structure. Crack accelera-
tion and steady regimes, including nucleation were dis-
cussed in detail in connection with the analytic model,
which predicts admissible speeds for a Mode-I frac-
ture in the lattice. The average crack propagation speed
has been estimated using an analytical model, which
assumes that the crack propagates in a straight line with
constant speed. Results of the numerical lattice model
were compared to the analytical predictions with a good
agreement.

The numerical model has proved to be efficient
in describing the formation and coalescence of voids
inside the lattice, the nucleation phenomenon.
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