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Abstract Granular materials such as sand may be viewed as continuous bodies composed of much smaller
elastic bodies. The multiscale geometry of structured deformations captures the contribution at the macrolevel
of the smooth deformation of each small body in the aggregate (deformation without disarrangements) as well
as the contribution at the macrolevel of the non-smooth deformations such as slips and separations between
the small bodies in the aggregate (deformation due to disarrangements). When the free energy response of
the aggregate depends only upon the deformation without disarrangements, is isotropic, and possesses stan-
dard growth and semi-convexity properties, we establish (i) the existence of a compact phase in which every
small elastic body deforms in the same way as the aggregate and, when the volume change of macroscopic
deformation is sufficiently large, (ii) the existence of a loose phase in which every small elastic body expands
and rotates to achieve a stress-free state with accompanying disarrangements in the aggregate. We show that a
broad class of elastic aggregates can admit moving surfaces that transform material in the compact phase into
the loose phase and vice versa and that such transformations entail drastic changes in the level of deformation
of transforming material points.

Keywords Granular materials · Phase transitions · Elastic aggregates · Structured deformations

1 Introduction

The purpose of this article is threefold:

• to use multiscale geometry in the form of structured deformations [1] to provide a field theory for continuous
bodies that submacroscopically may be thought of as aggregates of elastic bodies,

• to show for a broad class of elastic bodies and for the standard class of macroscopic deformations in those
bodies the existence of a “compact phase” in which the aggregate of elastic bodies deforms as a single
elastic body, and to show for each of a large subclass of macroscopic deformations the existence of a “loose
phase” in which each small elastic body within the aggregate is free of stress and may deform differently
from the aggregate,
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• to exhibit and describe moving interfaces that separate the loose and compact phases of the aggregate.

To illustrate in a concrete setting the main issues underlying our goals, we note that each of the pages
of a paper-back book may be thought of as a thin elastic body, while the bound aggregate of pages may be
considered as a continuous body with properties different from those of a single page. The compact phase of
the aggregate in this case can be achieved by applying equal and opposing compressive forces to the opposite
covers of the book: each page of the book undergoes a compressive stress and is flattened slightly; moreover,
the compressive stress prevents small spaces from forming between the pages and provides frictional forces
between the pages that prevent the pages from sliding relative to each other. In the compact phase, the aggregate
of pages is rather stiff and resists bending and shearing. The loose phase of the aggregate can be attained from
the compact phase by hanging the book from the bound edges of the pages and removing the compressive
forces on the covers. Each page of the book no longer is compressed, and the lower edges of the hanging pages
spontaneously separate slightly from each other. In this loose phase, the aggregate of pages is less stiff and
less resistent to bending and shearing, because the frictional forces between adjacent pages are absent, and
substantial changes in the shape of the aggregate can arise under the action of relatively small applied forces.
The act of bending the loose aggregate of pages gives rise to compressive forces that can restore the frictional
forces between pages and cause subcollections of pages to return to the compact phase. Reversing the bending
of the aggregate can reverse the transformations. The aggregate in the compact phase viewed under normal
light appears nearly purely white in color, while in the loose phase the aggregate of pages appears gray in
color. The transformations between the loose and compact phases that arise upon bending the loose aggregate
are quite vivid: white regions of pages in the compact phase appear and disappear within the gray aggregate of
pages in the loose phase, and the gray and white regions are separated by interfaces that move as the amount
of bending changes.1

Additional examples of elastic aggregates that appear in both loose and compact phases are powdered or
granular materials such as talc, breakfast cereal, sand, packaging aggregates, and “powder snow.” In these
materials, the behavior in the loose phase can include fluid-like behavior in which drastic changes in shape
and large displacements occur. For example, a pile of sand can separate into a compact region at rest and a
loose region of flowing sand, as the steepness of the pile exceeds a critical value. Similarly, breakfast cereal
in a container can flow from the opening of the container through a narrow band that is adjacent to regions
in which no flow occurs. The ubiquity and usefulness of such aggregates in everyday life has generated over
the decades a wide-ranging, diverse literature on experimental observations and theoretical descriptions of
specific materials within this broad class (see, for example, the lecture notes [2] for a variety of approaches to
mathematical modeling of granular materials as well as the references cited later in this introduction).

The theoretical tools for modeling such aggregates include continuum mechanics, statistical mechanics,
discrete mechanics, and computational mechanics. Here, we focus on using structured deformations of continua
[1] via the continuum field theory [3] of elastic bodies undergoing disarrangements (non-smooth submacro-
scopic geometrical changes such as slips and void formation) to identify a broad class of elastic bodies that
exhibit both loose and compact phases. The process of identifying elastic bodies with both loose and com-
pact phases begins in Sect. 2 where the field theory [3] is summarized briefly. In this theory, the multiscale
geometrical changes of a body are described by pairs (g,G) called structured deformations in which g is the
macroscopic deformation field and G is a tensor field that measures the contribution to macroscopic defor-
mation arising from smooth, submacroscopic geometrical changes. In order for the macroscopic geometrical
changes to provide enough room to accommodate the submacroscopic changes associated with G, the pair
(g,G) is required to satisfy the Accommodation Inequality 0 < det G ≤ det ∇g, that is, the volume changes
associated with the deformation without disarrangements cannot exceed the macroscopic volume changes.
As a consequence of these requirements, one can prove that the tensor field M = ∇g − G represents the
contributions to the macroscopic deformation arising from disarrangements [1]. In the field theory for elastic
bodies undergoing disarrangements [3], the Helmholtz free energy response function depends upon both the
deformation without disarrangements G and the deformation due to disarrangements M , and this field theory

1 Typically, in addition to the small spaces between pages that appear in the loose phase, large gaps between pages can form
during deformation of the aggregate of pages. It is not our intention to take into account explicitly in the present analysis such
large gaps or to predict their formation, but the approach that we take here can be broadened to address this phenomenon. More
significantly, we shall restrict our attention in the following analysis to elastic aggregates that behave in the compact phase as an
isotropic elastic body. Because the aggregate of pages of a book in the compact phase has the symmetry of a transversely isotropic
body, it does not fall within the scope of our analysis. Nevertheless, the observed features of the aggregate of pages described in
this paragraph arise naturally in the course of our analysis and provide concrete intuition and motivation for questions that we
raise and study.
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includes the standard field theory of nonlinear elasticity in which the free energy depends upon the single
variable ∇g = G + M.

In Sect. 3, the field theory in Sect. 2 is specialized to the case of “purely dissipative disarrangements” in
which non-smooth submacroscopic geometrical changes do not affect the energy stored in the body. This spe-
cialization leads to a class of free energy response functions, each of which depends only upon the single tensor
variable G, the deformation without disarrangements, and which can be ascribed growth and semi-convexity
properties known to be significant from the vast literature on nonlinear elasticity. The assumed growth and
smoothness properties of � imply that it attains a minimum �min on the set of tensors G with positive deter-
minant. We further require in Sect. 3 that the free energy response be isotropic, and this additional requirement
implies that there is a purely dilatational deformation G = ζmin I at which the minimum �min is attained, so
that D�(ζmin I ) = 0. Consequently, every structured deformation of the form (g, ζmin Q), with Q an orthog-
onal-valued tensor field, has vanishing stress field: S = D�(ζmin I ) = 0 and minimizes the free energy. The
Accommodation Inequality requires that the structured deformation (g, ζmin Q) satisfy ζ 3

min ≤ det ∇g, and we
conclude in Sect. 3 that: the given body B attains a stress-free configuration g(B) with minimum free energy
for every macroscopic deformation field g whose gradient has determinant no less than ζ 3

min. We use the term
“dilatationally cohesionless” to describe such a body, because sufficiently large macroscopic volume changes
allow the body to attain stress-free configurations, no matter what the shape of the body.

Section 4 begins with an application of the Approximation Theorem for structured deformations [1] to
the structured deformations (g, ζmin Q) satisfying ζ 3

min ≤ det ∇g, and we conclude that a dilatationally cohe-
sionless body that undergoes (g, ζmin Q) can be viewed (approximately but to within any desired accuracy)
as an aggregate of small elastic bodies, each undergoing a dilatation that leaves it stress free, along with a
rotation and translation that avoids interpenetration with other small bodies in the aggregate. We use the term
“loose phase associated with g” to describe the aggregate in the configuration associated with the structured
deformation (g, ζmin Q). We point out in Sect. 4 that an equilibrium configuration in which the aggregate is in
the loose phase is submacroscopically stable in the sense of [4]. Thus, the loose phase can be attained if the
macroscopic deformation g allows enough room for each small body in the aggregate to relax to a stress-free
configuration and, once the loose phase and equilibrium are attained, the aggregate prefers not to undergo
further submacroscopic changes.

In contrast to the loose phase associated with g when ζ 3
min ≤ det ∇g, we may consider for each macroscopic

deformation g, without any restriction on its volume change det ∇g, the “classical deformation” (g,∇g). For
this special structured deformation, there holds G = ∇g, so that M = 0 and no disarrangements occur. In
particular, no voids are formed and no slips occur, and we may view the classical deformation (g,∇g) as
producing geometrical changes in which each small body in the aggregate deforms in exactly the same way
as the aggregate, itself. Consequently, we use the term “compact phase associated with g” to describe the
aggregate in the configuration associated with the structured deformation (g,∇g).

The compact and loose phases just described are instances of “solid-like” and “fluid-like” states of granular
matter discussed in the literature. Khakhar [5] surveys a number of continuum models of granular materials
undergoing processes that entail solid-like states and fluid-like states, either in isolation or in coexistence.
For example, steady flow of a granular material in a circular cylinder rotated slowly about its axis entails at
each instant a solid-like region undergoing a rigid-body rotation and a fluid-like region undergoing a nearly
uni-directional flow with particles moving continuously from one region to the other. Employing the widely
used discrete element method of computational mechanics [6], Souroush and Ferdowsi [7] simulate a granular
material undergoing cyclical, triaxial deformation processes at constant volume and at strain rates slow enough
that the aggregate of particles has solid-like behavior over the initial cycles of the processes. The simulations
show that “fluidization” occurs after relatively few cycles, in that the deviatoric stress vanishes throughout
subsequent cycles. In statistical mechanical simulations of a dense sheared granular fluid [8], “crystallization”
occurs in an aggregate of smooth inelastic hard disks through the formation of a central region of particles that
are triangularly packed. This solid-like region is bordered above and below by fluid-like regions undergoing
nearly uniform shearing and exchanging particles with the solid region. The coexistent solid-like and fluid-like
phases arising in the above simulations of granular aggregates are reflected in recent experiments in a parallel
plate shear cell designed for the study of large-scale shear flows [9]. These observed flows reveal that the
process of cyclical shearing of spherical particles results in the gradual appearance of a layered structure in
the granular medium that eventually crystallizes into hexagonal-close-packed layers forming three-dimen-
sional face-centered-cubic crystals. The availability of both compact and loose phases in the dilatationally
cohesionless elastic bodies introduced here provides a new continuum framework for the theoretical study of
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the interplay between solid-like and fluid-like phases arising in simulations and experiments in the current
literature.

We view the concepts and results described in Sects. 2–4 as having accomplished the first two of the three
goals set forth at the beginning of this Introduction, and we devote the remainder of the paper to providing a
rather broad material context and two specific geometrical contexts (of possibly many) in which the remaining
goal is accomplished. The material context is that of dilatationally cohesionless bodies described at the end of
Sect. 3. In Sects. 5–10, two different geometrical contexts are described and studied, both of which exclude
the possibility that a shock wave forms in either phase. The geometrical context introduced in Sect. 5 requires
that each of the motions gc and g� of the compact and loose phases represents a time-independent, homoge-
neous change in shape of the body followed by a translational motion with constant acceleration, so that all of
the material points in the compact phase move together as a pre-deformed, rigid body, and all of the points
in the loose phase move as a second rigid body. The specific forms chosen for gc and g� in Sect. 5 imply
that the deformation gradients ∇gc and ∇g� differ by a rank-one tensor (ξc − ξ�)Fa ⊗ n. Here, ξc and ξ� are
scalar measures of macroscopic deformation in the compact and loose phases, F is a given tensor with positive
determinant, and a and n are given unit vectors.

Our goals in Sects. 6–9 are

• to provide a description of the geometry and motion of interfaces in the aggregate that can separate the
loose and compact phases moving according to the motions gc and g� introduced in Sect. 5, and

• to relate to one another the deformation gradients ∇gc, ∇g� and the velocities ġc, ġ� that appear on the
two sides of such interfaces.

We examine interfaces that are space-time hypersurfaces on which gc and g� are equal, but on which ∇gc
and ∇g� may differ and on which ġc and ġ� may differ. Although we shall analyze the motions of the loose
and compact phases and interfaces separating them at a fixed temperature θ , this analysis requires knowledge
of properties of the free energy response on a small interval of temperatures containing θ along with related
thermodynamical considerations. In Sect. 6 we provide the forms of the First and Second Laws used in our
subsequent analysis as well as the additional constitutive relations required to broaden appropriately the field
theory [3] so as to cover temperatures other than the temperature θ . Within this broader context we show in
Sect. 6 that the laws of thermodynamics are satisfied in the motions gc and g� defined in Sect. 5 when the
temperature field is constant. In Sect. 7 we exploit the assumed semi-convexity and growth properties of the
free energy to deduce monotonicity and growth properties of the component of the stress field in the compact
phase associated with Fa ⊗ n, the diad describing (to within a scalar factor) the difference ∇gc − ∇g�.

Section 8 contains the core of our analysis of moving interfaces separating compact and loose phases of
elastic aggregates. We describe the phase interface as a space-time hypersurface and provide in Sect. 8.1 the
interfacial jump conditions corresponding to the balance of linear momentum, the First Law of Thermody-
namics, and the Second Law of Thermodynamics by writing each relation in a space-time divergence form
and citing a standard argument employing a space-time region that contains the interface in its interior. The
jump condition corresponding to the Second Law is an inequality that amounts to the assertion that the jump
in entropy density experienced as a material point changes from one phase to the other is non-negative, while
the jump conditions corresponding to the balance of linear momentum and the First Law are relations with
equality. These three jump conditions together with the requirement that gc and g� agree on a phase interface
are the relations that restrict the form of the phase interface and the values of the velocities and deformation
gradients in the contiguous compact and loose phases. In Sect. 8.2 we show that, given the tensor F , the
two unit vectors a and n, and the positive number θ , the assumption that the phase interface is planar along
with the relations obtained in Sect. 8.1 allow one to determine (i) t̂(X), the time at which the phase interface
passes through a given point X in the reference configuration, (ii) [ġ] (X, t̂(X)), the jump in velocity across
the interface at that point, (iii) ξ�, the scalar deformation parameter for the loose phase, and (iv) �, the speed
of the phase interface, all four as functions of F, a, n, θ , and of ξc, the corresponding scalar deformation
parameter for the compact phase. Moreover, the jump conditions imply that the internal energy density in the
compact phase is no less than that in the loose phase.

Section 8.3 is devoted to the study of three inequalities that arise in the analysis up to this point: (a) the
condition that the entropy cannot decrease as a given material point undergoes the phase transition, (b) the
Accommodation Inequality in the loose phase, and (c) the condition that the internal energy density in the
compact phase is no less than that in the contiguous loose phase, derived in Sect. 8.2. For given F, a, n, and
θ , the three inequalities lead to sufficient conditions to be satisfied by the parameter ξc in order that a moving
interface separating the two phases be present. For each of the three different types of transitions, (1) “loose-
to-compact,” (2) “compact-to-loose,” and (3) “reversible,” we determine in Sect. 8.3 sufficient conditions on
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ξc in order that the inequalities (a)–(c) are satisfied. The results in Sect. 8.3 suggest that loose-to-compact
transitions are available under a broader range of conditions than compact-to-loose transitions which, in turn,
are more broadly available than reversible transitions.

For the case of reversible transitions, we construct in Sect. 8.4 an example of a motion of an elastic aggre-
gate that admits an infinite succession of reversible transitions between the loose and compact phases of the
aggregate. At regular times, planar phase interfaces travel from one end of a rectangular slab (the reference
configuration) to the opposite end, with a new interface starting at the first end as the previous one reaches the
second end. The deformation gradient and the velocity within each phase are constant, and a schematic figure
showing trajectories of points in the opposing ends of the slab is presented in Sect. 8.4 for the case when the
velocity in the compact phase is zero.

The relation (64) in Sect. 8.2 that determines the deformation parameter ξ� as a function of ξc, along
with the monotonicity properties of the component of stress associated with Fa ⊗ n established in Sect. 7,
underlies the analysis of compact-to-loose and loose-to-compact transitions given in Sect. 8. In particular, the
behavior of the ratio of the jump in internal energy to that stress component as the deformation parameter ξc
tends to ξ0, the point where the stress component vanishes, determines the behavior of ξ� as ξc tends to ξ0. In
Sect. 9 we highlight the essential feature of that limiting behavior exploited in Sect. 8: |ξ�| tends to ∞ as ξc
tends to ξ0. This feature tells us that the transitions, whose existence are established in Sect. 8, can drastically
increase the deformation for the compact-to-loose transition and drastically reduce the deformation for the
loose-to-compact transition.

A second geometrical context for the study of moving phase interfaces is provided in Sect. 10, where the
class of homogeneous deformations for the compact phase studied in Sects. 5–9 is broadened to admit non-
homogeneous deformations in the form of plane progressive waves with small associated strains superposed
on a homogeneous, background state of deformation, while the restriction to homogeneous deformations in the
loose phase is maintained. Accordingly, satisfaction of the balance laws in the compact phase and satisfaction
of the jump conditions on phase interfaces is imposed in an approximate sense, consistent with the context of
small strains. Moreover, in order to simplify and make more explicit the analysis in Sect. 10, we assume that
the phase boundary and the progressive wave in the compact phase have the same orientation. Our analysis
provides sufficient conditions on the temperature and on the background strain, orientation, and direction of
the progressive wave for the existence of a moving phase boundary.

In Sect. 11, we illustrate the results obtained in Sects. 8–10 when the free energy function has the special
form

�(G, θ) = 1

2
α(θ)(det G)−2 + 1

2
β(θ)G · G,

with α(θ) and β(θ) temperature-dependent elastic modulii. This class of free energies has appeared in various
studies of nonlinear elastic behavior (see, for example, [10], Section 4.10), because of its simple analytic form
and its growth and semi-convexity properties. Moreover, this class of free energy functions satisfies the require-
ments we make for elastic aggregates and so falls within the present theory. In Sect. 11.2 we specialize the
sufficient conditions for the existence of moving phase interfaces obtained in Sects. 8 and 9 (where both phases
to within a translation undergo time-independent homogeneous deformations) to such free energy functions
and to particular choices of the parameters F, a, and n compatible with a simple shear in the compact phase.
In Sect. 11.3, we carry out an analogous specialization of the results in Sect. 10 (where the compact phase
can undergo non-homogeneous, time-dependent deformations in the form of small-strain, progressive waves)
to this class of free energy functions, to a particular family of background deformations in the compact phase,
and to the case where the waves in the compact phase are shear waves.

In the results obtained in Sect. 11, the inequality β(θ) ≤ α(θ) relating the two elastic modulii plays a cen-
tral role: this inequality is a necessary condition for the presence of a progressive shear wave in the compact
phase that is adjacent to the homogeneously deformed loose phase, while the opposite inequality is a necessary
condition for the presence of a static, homogeneous deformation in the compact phase that is adjacent to the
homogeneously deformed loose phase. Moreover, when β(θ) ≤ α(θ), so that a progressive shear wave may
be present in the compact phase, the deformation in the loose phase necessarily is a uniaxial extension, while
for the opposite inequality the deformation in the loose phase is a simple shear. Thus, the relative stiffness
of each piece of the aggregate in distortion versus that in dilatation determines whether the loose phase may
undergo a simple shear or an extension as a phase interfaces moves through the body.

One notable feature of our analysis is the absence of a “kinetic relation,” a constitutive assumption that
relates the speed of a moving interface to the states of the phases separated by the interface (see [11] for back-
ground, motivation, and detailed analysis of the role played by kinetic relations in studies of wave propagation
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and phase changes in solids). From the point of view taken in [11], the structure of a “kinetic relation” rests
on the notion of “driving force” that is identified by means of a “work–energy relation,” formulated for an
arbitrary subregion of a body containing a surface across which discontinuities in the basic continuum fields
appear. A kinetic relation relates the driving force to the speed of a moving interface and, when the stress-
deformation relation is not monotone, eventually selects from a number of alternatives a particular deformation
that can be present at a given level of stress. We note that the jump condition associated with the First Law of
Thermodynamics in our study is a counterpart of the “work–energy relation” that identifies the driving force
in [11].

There appear to be two features in our analysis in Sects. 5–9 that obviate the need for a kinetic relation:

• the only stress component in the compact phase that enters into our analysis is associated with a spatially
constant diad (measuring the direction of the jump in deformation gradient), and the assumed rank-one
convexity of the free energy implies that this stress component is a monotone function of a corresponding
scalar measure of deformation;

• the Accommodation Inequality in the loose phase actually restricts the level of deformation in the compact
phase to an interval close to a point where the above stress component vanishes; consequently, monotonicity
of the stress component as a function of the measure of deformation in the compact phase only is needed
when the stress component is small.

2 Field relations for elastic bodies undergoing disarrangements

According to the field theory formulated for elastic bodies undergoing disarrangements [3] in the context of
structured deformations (g,G), the macroscopic deformation g, the deformation without disarrangements G,
and the deformation due to disarrangements M = ∇g − G satisfy the following relations:

ρ0 g̈ = div(DG� + DM�)+ b, (1)

DG� MT + DM� (∇g)T = 0, (2)

sk(DG� MT + DM� GT ) = 0, (3)

DG� · Ṁ + DM� · Ġ ≥ 0, (4)

0 < det G ≤ det ∇g. (5)

All of the fields in these relations are defined on pairs (X, t) with X in a given reference configuration for
the body and with t in a given open interval. The relations are formulated in the special context of isothermal
deformations; accordingly, the temperature field is assumed to be constant in space and time. We assume
also that ρ0, the density in the reference configuration, also is a constant. The vector field b in (1) is the
body force measured per unit volume in the reference configuration. The Helmholtz free energy function
(G,M) �→ �(G,M) determines the free energy per unit volume in the reference configuration ψ through the
constitutive relation

ψ(X, t) = �(G(X, t),M(X, t)) (6)

for all points X in the reference configuration and times t of interest. The sum of partial derivatives DG�+DM�
turns out to be the Piola–Kirchhoff stress field S in the field theory [3],

S = DG� + DM�, (7)

and the relation (1) is the local form of the balance of linear momentum in the reference configuration. Because
the Piola Kirchhoff stress S not only can be decomposed additively as DG�+ DM� but also multiplicatively
as DG� K T , with K := (∇g)−1G (see [3] for details), the consistency relation (2) must hold throughout
the reference configuration at all times. The additive decompositions S = DG� + DM� and ∇g = G + M
imply that the rate of dissipation S · ∇ ġ − ψ̇ per unit volume in the reference configuration is given by
DG� · Ṁ + DM� · Ġ, and the relations (3) and (4) express the requirement that the rate of dissipation
be frame-indifferent and non-negative. The final field relation is the Accommodation Inequality [1,12] that
expresses the requirement that disarrangements not result in the interpenetration of matter.
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3 Dilatationally cohesionless elastic materials

Suppose that the Helmholtz free energy ψ for a structured deformation (g,G) obeys the special constitutive
relation

ψ(X, t) = �(G(X, t)). (8)

The relation (8) is the statement that Helmholtz free energy (per unit volume in the reference configuration) asso-
ciated with the structured deformation (g,G) does not depend upon the disarrangement tensor M = ∇g − G,
so that, while disarrangements can contribute to the dissipation occurring in the material, those disarrange-
ments cannot contribute to the free energy in the material. Accordingly, we may call the disarrangements in
such a material purely dissipative.

Because (8) implies that DM� = 0, the field relations for a general elastic body reduce in the case of
purely dissipative disarrangements to the relations

ρ0 g̈ = div(DG�)+ b, (9)

DG� MT = 0, (10)

sk(DG� MT ) = 0, (11)

D�G · Ṁ ≥ 0, (12)

0 < det G ≤ det ∇g. (13)

We note that in the present context of purely dissipative disarrangments (8) the consistency relation (10)
implies the frame indifference relation (11), and we may omit the latter from the list of requirements of the
field theory in what follows. Moreover, the stress relation (7) reduces to

S = DG�. (14)

If the material is isotropic, then

�(G Q) = �(G) for all Q ∈ Orth+, (15)

where Orth+ denotes the proper orthogonal group for the underlying Euclidean space E and its translation
space V . The polar decomposition G = VG RG permits one to write (8) in the form (without displaying all
arguments):

ψ = �(VG). (16)

We assume further that the response function � is smooth and satisfies the two limit conditions

lim
ζ−→0+�(ζ I ) = lim

ζ−→+∞�(ζ I ) = +∞ (17)

These conditions state that under extreme contraction and under extreme expansion the stored energy increases
without bound. Because � is smooth, the limit conditions (17) tell us that there exists ζmin > 0 such that
�(ζmin I ) = minζ>0�(ζ I ), and consequently

0 = d

dζ
�(ζ I ) |c=ζmin= DG�(ζmin I ) · I

that is, tr D�(ζmin I ) = 0. Because the response of the material is assumed to be isotropic, the frame indiffer-
ence of the response implies

DG�(QV QT ) = Q DG�(V )Q
T for all Q ∈ Orth and V ∈ Sym+, (18)

where Orth denotes the orthogonal group, and Sym+ denotes the positive definite tensors on V . Applying (18)
when V = ζmin I we conclude that

DG�(ζmin I ) = Q DG�(ζmin I )QT for all Q ∈ Orth

and, therefore, that there exists p̃ ∈ R satisfying

DG�(ζmin I ) = p̃ I.
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The conclusion tr D�(ζmin I ) = 0 obtained above yields p̃ = 0 and therefore, according to the stress relation
(14),

S = DG�(ζmin I ) = 0. (19)

We observe here that every classical deformation (g,∇g) satisfies the consistency relation (10) (since in
this case M = 0). Moreover, every structured deformation (g,G) for which the stress response S = DG�(G)
is zero also satisfies the consistency relation. Furthermore, the Accommodation Inequality (5) is satisfied with
equality by every classical deformation; it is satisfied by a structured deformation of the form (g, ζmin I ), or
more generally of the form (g, ζmin Q) with Q ∈ Orth+, if and only if

ζ 3
min ≤ det ∇g. (20)

We may now state the following remark:

Remark 1 Let the Helmholtz free energy � and the positive number ζmin satisfy not only the conditions (8),
(15), and (17) above but also the following strengthened version of �(ζmin I ) = minς>0�(ς I ):

�(ζmin I ) = min
ζ>0

�(ζ I ) = min
G∈Lin+�(G), (21)

with Lin+ the group of linear mappings on V with positive determinant. Then for each macroscopic defor-
mation g satisfying (20) and each Q ∈ Orth+ the structured deformation (g, ζmin Q) provides a stress-free
configuration for the body in which the free energy of the body is a minimum. In other words, if the free energy
attains a minimum at the tensor ζmin I , then for sufficiently large volume changes det ∇g associated with the
macroscopic deformation g, the stress-free, final configuration associated with (g, ζmin Q) (with Q any proper
orthogonal tensor) is geometrically admissible in the body and minimizes the free energy. In addition, if strict
inequality holds in (20), then the stress-free configuration associated with (g, ζmin Q) does not correspond to
a classical deformation: ∇g 
= ζmin Q.

We note that the orthogonal tensor Q above can be replaced by any orthogonal valued tensor field on the
body and the same conclusions hold. Therefore, when the body force is zero and g is independent of time,
an equilibrium configuration can be achieved via a macroscopic deformation g satisfying (20) together with a
time-independent “texturing” dilatational field G = ζmin Q, because all of the field relations are then satisfied.
As indicated in Remark 1, these equilibria need not be classical deformations. In fact, (g, ζmin Q) is a classical
deformation if and only if ∇g = ζmin Q, which by Euler’s Theorem amounts to the requirement that Q be a
constant field equal to 1

ζmin
∇g, so that g, itself, is a scalar multiple of a rotation.

It is important to note also that the condition (21) follows from the weaker condition �(ζmin I ) =
minζ>0�(ζ I ) provided that the free energy response � satisfies standard regularity and growth conditions
known to be significant in the solution of variational problems associated with equilibrium configurations of
isotropic elastic bodies (see [13], Theorem 1). Specifically, the condition

min
G∈Lin+�(G) = min

ζ>0
�(ζ I ) (22)

is satisfied if the function � is isotropic, rank-one convex, and has the following growth properties:

lim
det G−→0

�(G) = lim|G|−→∞�(G) = ∞. (23)

These conditions on� provide a broad and well-studied class of free energy response functions for which the
conclusions of Remark 1 are valid.

We call an elastic material dilatationally cohesionless relative to the positive number ζmin if its free energy
response function satisfies the conditions of purely dissipative disarrangements (8), isotropy (15), growth (17),
and coincidence of minimizers (21) that form the hypotheses of the previous remark. Our use of the term “dil-
atationally cohesionless” underscores the fact that all macroscopic deformations g that cause sufficiently large
expansion of the material are realizable in stress-free equilibria of the form (g, ζmin Q) with det ∇g ≥ ζ 3

min
and with Q any proper orthogonal-valued field. The class of dilatationally cohesionless elastic materials is
intended to describe materials such as, for example, dry sand, powdered snow, dry cereals and grains, and
packaging materials.
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4 Compact and loose phases of elastic aggregates

We suppose that a body composed of a dilatationally cohesionless elastic material relative to ζmin undergoes
a macroscopic deformation g with det ∇g ≥ ζ 3

min. Not only is the deformed configuration associated with
the classical deformation (g,∇g) geometrically admissible in the body, but so also is the deformed configu-
ration associated with the structured deformation (g, ζmin Q) with Q any proper orthogonal-valued field. The
appearance of g in the first entry in both pairs signifies that the macroscopic deformations associated with the
pairs are one and the same. In attaining the deformed configuration associated with the classical deformation
(g,∇g), the body undergoes no disarrangements and, in particular, no voids have been formed. Moreover,
the stress S = DG�(∇g) experienced in that configuration need not be zero. In order for the body to attain
the deformed configuration associated with (g, ζmin Q)when ∇g 
= ζmin Q, disarrangements must occur in the
body, voids must be created when det ∇g > ζ 3

min, and the stress DG�(g, ζmin Q) in that configuration must
vanish. For a given macroscopic deformation g satisfying det ∇g ≥ ζ 3

min, we use the term the compact phase
for g to describe the body in the deformed configuration associated with the classical deformation (g,∇g) and
the term the loose phase for g to describe the body in the deformed configuration associated with the generally
non-classical structured deformation (g, ζmin Q).

Suppose alternatively that the macroscopic deformation g satisfies det ∇g < ζ 3
min. The pair (g,∇g) is

again a structured deformation in which the body undergoes no disarrangements and may experience non-zero
stresses, and we use as above the term compact phase for g to describe the body in the deformed configuration
associated with (g,∇g). In contrast, the pairs (g, ζmin Q) in this case are not structured deformations, because
the Accommodation Inequality (5) is violated, and we describe this situation by saying that, for the given mac-
roscopic deformation g, the loose phase is not geometrically admissible in the body. In what follows, when
we speak of the loose phase for a macroscopic deformation g, it is understood that g satisfies the inequality
det ∇g ≥ ζ 3

min.
We note that the Approximation Theorem for structured deformations [1] permits us to associate with each

structured deformation (g,G) a sequence of injective, piecewise smooth deformations n �→ fn satisfying
limn−→∞ fn = g and limn−→∞ ∇ fn = G. In the case det ∇g ≥ ζ 3

min, we apply this result to the loose phase
for g, that is, to the structured deformation (g, ζmin Q) with Q any proper orthogonal-valued field, to obtain a
sequence n �→ fn satisfying limn−→∞ fn = g and limn−→∞ ∇ fn = ζmin Q. Each injective, piecewise smooth
deformation fn in such a sequence provides an approximate view of the complex submacroscopic geometrical
changes associated with the structured deformation (g, ζmin Q). Specifically, the geometrical changes associ-
ated with fn in this case amount to breaking the body into many small pieces, expanding each piece an amount
associated with the positive number ζmin and rotating each piece according to the value of the orthogonal
tensor field Q at a point in the center of each piece; the pieces finally must be translated appropriately (without
interpenetration) to meet the requirement that fn be injective and be close to the macroscopic deformation g.
Consequently, we may view the body in the deformed configuration associated with the loose phase as con-
sisting of an aggregate of small subbodies, each undergoing its own rotation along with a common expansion.
For this reason, we use the term elastic aggregate to describe an elastic body that is dilatationally cohesionless
with respect to ζmin.

When a body undergoes the classical deformation (g,∇g), the sequence of piecewise smooth deformations
in the Approximation Theorem can be taken to be the constant sequence n �→ g, so that the body as a whole
undergoes the smooth deformation g at every stage in the approximating sequence. We may then describe the
deformed configuration associated with the compact phase as one obtained when the elastic aggregate behaves
as a single, coherent body. In other words, the individual pieces of the aggregate are not distinguished in the
compact phase.

The appearance of piecewise smooth deformations of an isotropic elastic body in which each piece of the
body undergoes a dilatation is described in a different setting by Mizel [13]. In that article as well as here,
the distinguished role of dilatations arises through the class of stored energy functions under study. Here, the
piecewise smooth deformations arise as approximations to the structured deformations that describe the loose
phase, while in the article [13] these discontinuous deformations arise as a broad class of functions of bounded
variation that minimize the energy under particular circumstances.

As we described above, the loose phase for g is geometrically admissible if and only if the macroscopic
deformation satisfies det ∇g ≥ det (ζmin Q) = ζ 3

min. Thus, if the macroscopic deformation g satisfies the oppo-
site inequality det ∇g < ζ 3

min, the compact phase, but not the loose phase, for that g may appear. However,
for the case det ∇g ≥ ζ 3

min the loose phase for g not only may appear but also has the additional property
of submacroscopic stability defined and analyzed in [4]: for a given macroscopic deformation g, among all
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candidates G for the deformation without disarrangements for the structured deformation (g,G), the tensor
field G = ζmin Q minimizes an augmented energy functional that is stationary with respect to g when the
body is in equilibrium and whose rate of change in a prescribed class of processes equals the excess of the
rate at which energy is stored over the rate at which energy is dissipated during each process in the class.
In summary, when the macroscopic deformation g does not provide enough room for each of the pieces of
the aggregate to appear in its stress-free state of deformation ζmin Q, then only the compact phase for g can
appear; when enough room is provided by g, then both phases can appear and the loose phase for g determines
a submacroscopically stable equilibrium for the aggregate.

Because both the loose phase and the compact phase are available in every dilatationally cohesionless elas-
tic body, we may describe them as “universal phases” for the class of dilatationally cohesionless elastic bodies.
However, for a given body in this class, other phases may be available for a given macroscopic deformation
g, that is, there are other choices of G than ∇g and ζmin Q such that the pair (g,G) satisfies (9)–(13). Some
of these additional phases may also be universal for the class of dilatationally cohesionless bodies, and the
subsequent considerations that we undertake here also may be relevant to these additional phases. However,
we do not attempt here to identify explicitly additional universal phases.

5 Field relations governing the loose and compact phases: the case of homogeneous deformations
in each phase

In view of the special form of the structured deformations (g,∇g) and (g, ζmin Q) that determine the compact
and loose phases, the field relations (9)–(13) that govern a dilatationally cohesionless elastic material in the
compact phase for g are all satisfied identically, except for the balance of linear momentum:

ρ0 g̈ = div(DG�(∇g))+ b, (24)

while for every choice of the orthogonal-valued field Q : E −→Orth the field relations in the loose phase for
g all are satisfied identically except for the balance of linear momentum and the Accommodation Inequality:

ρ0 g̈ = b, (25)

ζ 3
min ≤ det ∇g. (26)

We now restrict our attention to the case in which the body force field b is a constant and define two families
of structured deformations (gc,∇gc) and (g�, ζmin Q) that generate special solutions of the field relations in
the case of the compact and loose phases, respectively. Let F ∈ Lin+, X0 ∈ E, a, n, vc, v� ∈ V with a, n
unit vectors, and ξc, ξ� ∈ R be given, and define gc, g� : E×R →E by

gc(X, t) = X0 + F(I + ξc a ⊗ n)(X − X0)+ tvc + t2

2ρ0
b, (27)

g�(X, t) = X0 + F(I + ξ� a ⊗ n)(X − X0)+ tv� + t2

2ρ0
b. (28)

For each t, X �→ gc(X, t) and X �→ g�(X, t) are homogeneous deformations with

∇gc(X, t) = F(I + ξc a ⊗ n)

∇g�(X, t) = F(I + ξ� a ⊗ n),

so that ∇gc(X, t) − ∇g�(X, t) = (ξc − ξ�)Fa ⊗ n is a rank-one tensor. This rank-one property of the dif-
ference in deformation gradients is a necessary condition in order that two given homogeneous deformations
determine a continuous field that agrees with gc on one side of a smooth surface and with g� on the other. Since
∇gc = F(I + ξc a ⊗ n) is independent of X and g̈c = b/ρ0, (gc,∇gc) satisfies balance of linear momentum
(24) in the compact phase. Because of the choice of ζmin, the relation (19) and the relation g̈� = b/ρ0 tell
us that (g�, ζmin Q) satisfies the balance of linear momentum (25). The Accommodation Inequality (26) is
satisfied by (g�, ζmin Q) if and only if

ζ 3
min ≤ det(F(I + ξ� a ⊗ n)) = (det F) (1 + ξ� a · n). (29)
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Similarly, the restriction 0 < (det F) (1 + ξc a · n) on F, ξc , a, and n, or, equivalently,

− 1 < ξc a · n (30)

amounts to the condition 0 < det ∇g� that is required of every macroscopic deformation. If a · n > 0, (30) is
equivalent to the requirement

ξc ∈ (−(a · n)−1,∞);
if a · n < 0, the inequality (30) is equivalent to the requirement

ξc ∈ (−∞, −(a · n)−1);
if a · n = 0, then (30) places no restriction on ξc. In conclusion, we may express the content of (30) by writing

ξc ∈ Ia,n where Ia,n =
⎧

⎨

⎩

(−(a · n)−1,∞) if a · n > 0
(−∞, −(a · n)−1) if a · n < 0

R if a · n = 0.
(31)

We shall use the following easily established results in the next section:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

lim
ξc−→−(a·n)−1

det ∇gc = 0 and lim
ξc−→∞ |∇gc| = ∞ if a · n > 0

lim
ξc−→−∞ |∇gc| = ∞ and lim

ξc−→−(a·n)−1
det ∇gc = 0 if a · n < 0

lim
ξc−→−∞ |∇gc| = ∞ and lim

ξc−→+∞ |∇gc| = ∞ if a · n = 0.

(32)

6 Thermodynamical considerations

We pause to consider two additional field relations, the local forms of the First and Second Laws of Ther-
modynamics, formulated in the reference configuration for a general elastic body, for a general structured
deformation (g,G), and for a not necessarily constant temperature field θ :

ε̇ = S · ∇ ġ − divq + r (33)

ψ̇ ≤ S · ∇ ġ − η θ̇ − q · ∇θ
θ

. (34)

In recording the local version of the First Law, we denote by r the external radiation field on the body. In
these relations, the internal energy ε and the free energy ψ are assumed constitutively to be functions of
G, M = ∇g − G, and θ , while the heat flux q is assumed to be a function of G, M, θ and ∇θ . We assume
further that q vanishes when ∇θ vanishes, as in the case of Fourier’s constitutive relation for heat conduction:
q = −κ(θ,∇g)∇θ . Because ε, ψ, θ , and the entropy η are related by

ε = ψ + θη, (35)

the entropy in this context also is determined constitutively as a function of G, M , and θ . We assume as in
Sect. 2 that the stress S is determined by the relation

S = DG� + DM� (36)

where now the free energy response function � may also depend upon the temperature θ , and we make the
additional constitutive assumption:

η = −Dθ�. (37)

The stress relation (36), the entropy relation (37), and the Second Law (34) yield the dissipation inequality

DG� · Ṁ + DM� · Ġ − q · ∇θ
θ

≥ 0, (38)
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which we regard as a restriction on the thermodynamical processes that can be realized in the body. [For the
case of uniform temperature fields, this inequality reduces to (4)]. The entropy relation (37) and the formula
(35) imply that the internal energy ε is given constitutively by

ε = � − θDθ�. (39)

Let us now return to our earlier assumption that the temperature field θ is a constant in space and time, and
we assume now that the radiation field r vanishes. We resume our consideration of loose and compact phases
of a dilatationally cohesionless elastic body undergoing the motions (27) and (28), respectively, and recall that,
in this context, the deformation due to disarrangements M drops out of all of the constitutive relations (36),
(37), and (39). Moreover, the relations ∇ ġc = ∇ ġ� = 0 and the constitutive assumption on the heat flux field
q formulated above tell us that the First and Second Laws (33), (34) and the dissipation inequaltiy (38) are
satisfied by (gc,∇gc) and (g�, ζmin Q) in the form “0 = 0”. In particular, no dissipation occurs in the phases
individually, and the only source of dissipation within the body will turn out to be the moving interfaces that
separate the phases.

7 Consequences of rank-one convexity and growth

In the analysis of the following sections, we consider a dilatationally cohesionless elastic material relative
to the positive number ζmin, so that according to the definition given at the end of Sect. 3, the free energy
response function � satisfies the conditions of purely dissipative disarrangements (8), isotropy (15), growth
under extreme dilatations (17), coincidence of minimizers (21), and, consequently, the relation (19). We sup-
press in the notation of this section the dependence of � upon the temperature θ . In addition, we assume the
stronger growth properties (23) as well as the condition of rank-one convexity for� (stated here in a form that
exploits the assumed smoothness of � [14], p. 17): for all A ∈ Lin+ and u, v ∈ V

DG�(A) · (u ⊗ v) ≤ �(A + u ⊗ v)−�(A). (40)

As we noted following Remark 1, the stronger growth properties along with rank-one convexity imply the
coincidence of minimizers (21), as well as other relations that we shall use in this section. For example, rank-
one convexity of � implies the following monotonicity property for particular components of its derivative:
for each F ∈ Lin+, a, n ∈ V , and ξ, η ∈ R,

ξ ≤ η �⇒ DG�(F(I + ξa ⊗ n)) · (Fa ⊗ n) ≤ DG�(F(I + ηa ⊗ n)) · (Fa ⊗ n). (41)

In fact, if we put

f (ξ) := �(F(I + ξa ⊗ n)) = �(F + ξFa ⊗ n) for each ξ ∈ Ia,n (42)

[with Ia,n the unbounded interval defined in (31)], then

f ′(ξ) = DG�(F(I + ξa ⊗ n)) · (Fa ⊗ n). (43)

The rank-one convexity of � implies that f is convex, and the convexity and smoothness of f imply that f ′
is continuous and monotone increasing, that is, (41) holds.

Applying the rank-one convexity condition (40) with A = F + ξFa ⊗ n, u = −ξFa, and v = n yields
the inequality

DG�(F + ξFa ⊗ n)) · (−ξFa ⊗ n)

≤ �(F + ξFa ⊗ n + −ξFa ⊗ n)−�(F + ξFa ⊗ n)

= −(�(F + ξFa ⊗ n)−�(F))

or, equivalently,

DG�(F + ξFa ⊗ n) · (ξFa ⊗ n) ≥ �(F + ξFa ⊗ n)−�(F). (44)
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This relation, the limit relations (32), and the strong growth conditions (23) imply that the right-hand member
of (44) tends to plus infinity as ξ approaches either end of the interval Ia,n , and we conclude from these
assertions and from (42) that

lim
ξ−→inf Ia,n

f (ξ) = lim
ξ−→sup Ia,n

f (ξ)

= lim
ξ−→inf Ia,n

ξ f ′(ξ) = lim
ξ−→sup Ia,n

ξ f ′(ξ) = +∞. (45)

We conclude that f attains a minimum at at least one point in Ia,n . Because inf Ia,n is negative and sup Ia,n
is positive, the relation (45) also implies that the continuous, monotone increasing function f ′ must have
negative values near inf Ia,n and positive values near sup Ia,n . Therefore, the stress component f ′(ξ) =
DG�(F(I + ξa ⊗ n)) · (Fa ⊗ n) is a monotone increasing function of ξ that increases from negative values
to positive values as ξ increases through Ia,n , and the stress component vanishes on the (possibly singleton)
interval of points where f attains its minimum on Ia,n (and at no others). For convenience, we assume in what
follows that the stress component f ′(ξ) = DG�(F(I + ξa ⊗ n)) · (Fa ⊗ n) vanishes at exactly one point
ξ = ξ0 in Ia,n , and we note from the definition of ζmin and from the relation (21) that

f (ξ0) := min
ξ∈Ia,n

f (ξ) = min
ξ∈Ia,n

�(F + ξFa ⊗ n) ≥ min
G∈Lin+�(G) = �(ζmin I ).

8 Moving interfaces separating loose and compact phases

Each of the macroscopic deformations (27) and (28) considered here has the geometrical effect of causing
a homogeneous deformation that changes the shape of the body followed by a rigid translation at constant
acceleration. Our main interest in the sequel is to delimit ways in which the body can be partitioned into
adjacent regions, one of which is occupied by material in the compact phase and the other by material in the
loose phase, with the possibility that material points in one phase can be transformed into material points of the
other as the interface separating the phases moves through the reference configuration. As we noted earlier, the
loose phase has the property of providing a submacroscopically stable equilibrium configuration for the body,
and this suggests that the loose phase be preferred. However, the Accommodation Inequality (26) provides a
lower bound for the amount of macroscopic volume change that must occur in order that the loose phase be
present. In particular, when the macroscopic volume change is too small, the body cannot appear in the loose
phase and may select as an alternative the compact phase. The details of the competition on energetic and
geometric grounds between the loose and compact phases are the subject of the present section.

8.1 Jump conditions at a phase interface

We assume now that a smooth function t̂ defined on a subset of the reference configuration B determines points
(X, t̂(X)) that form a space-time surface I for which the normal vector field (X, t̂(X)) �−→ (−∇ t̂(X), 1)
on I has the property that one of the two structured deformations (gc,∇gc) and (g�, ζmin Q) is specified to
act on a space-time region R+ = {(X, t̂(X)) + γ (−∇ t̂(X), 1) | 0 < γ < γ+(X)} on the side of the surface
I into which (−∇ t̂(X), 1) points, while the other of the two structured deformations is specified to act on a
space-time region R− = {(X, t̂(X))− γ (−∇ t̂(X), 1) | 0 < γ < γ−(X)} on the opposite side of the surface
I. Here, γ+ and γ− are positive-valued functions such that the points X − γ∇ t̂(X) for γ ∈ (0, γ+(X)) and
the points X + γ∇ t̂(X) for γ ∈ (0, γ−(X)) all are in the reference configuration B, and we call the surface I
a (space-time) phase interface. If (gc,∇gc) acts on the space-time region R+, we say that the normal vector
(−∇ t̂(X), 1) points into the compact phase, and we refer to the region R+ as the compact phase. Similarly, if
(g�, ζmin Q) acts on R+, then we say that (−∇ t̂(X), 1) points into the loose phase and call the region R+ the
loose phase. We note that when, for example, the normal vector (−∇ t̂(X), 1) points into the compact phase,
the material at X transforms at time t̂(X) from the loose phase to the compact phase. Of course, the normal
vector (−∇ t̂(X), 1) is not a unit vector, in general.

For each t0 ∈ R the set of points X such that t̂(X) = t0 is the surface It0 = {X | (X, t0) ∈ I} in the
reference configuration, and we call It0 the phase interface at time t0. For each X ∈ It0 and γ ∈ (0, γ+(X))
we have

((X − γ∇ t̂(X), t0)− (X, t̂(X))) · (−∇ t̂(X), 1) = γ
∣

∣∇ t̂(X)
∣

∣

2
> 0,
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and this tells us that (X −γ∇ t̂(X), t0) ∈ R+ for every γ ∈ (0, γ+(X)). Given a point X ∈ It0 , and if, for exam-
ple, (gc,∇gc) acts on the space-time region R+, then all of the points (X − γ∇ t̂(X), t0) with γ ∈ (0, γ+(X))
are in R+ and, hence, in the domain of gc. Consequently, all of the points X − γ∇ t̂(X) with γ ∈ (0, γ+(X))
are in the domain of gc(·, t0); by the same reasoning, all of the points X + γ∇ t̂(X) for γ ∈ (0, γ−(X)) are in
the domain of g�(·, t0). We then are justified in stating that the vector −∇ t̂(X) normal at X to It0 , the phase
interface at time t0, points into the same phase as does the normal (−∇ t̂(X), 1) at (X, t0) = (X, t̂(X)) to I,
the space-time interface, and we may also assert without ambiguity that −∇ t̂(X) points into a particular phase
at time t0. In the sequel we often will not use the modifiers “space-time” and “at time t0” to distinguish the
precise sense in which terms such as phase interface, loose phase, and compact phase are employed.

For each piecewise smooth field h defined for each time t on the entire body, we denote by [h](X, t̂(X))
the jump in h at (X, t̂(X)), that is,

[h](X, t̂(X)) := lim
(y,τ )−→(X,t̂(X))+

h(y, τ )− lim
(y,τ )−→(X,t̂(X))−

h(y, τ ) (46)

where (y, τ ) −→ (X, t̂(X))+ indicates that, in taking the limit, h is restricted to points (y, τ ) near (X, t̂(X))
such that the inner product (y − X, τ − t̂(X)) · (−∇ t̂(X), 1) is positive, while (y, τ ) −→ (X, t̂(X))− indicates
that the restriction is made with (y − X, τ − t̂(X)) · (−∇ t̂(X), 1) < 0. Alternatively, for example, if the normal
(−∇ t̂(X), 1) points into the compact phase, we may write [h](X, t̂(X)) = hc(X, t̂(X))− h�(X, t̂(X)), where
the subscript c indicates that in taking the limit, h is evaluated at points in the compact phase, and the subscript
� indicates that h is evaluated at points in the loose phase.

The balance of linear momentum (1) can be written in the divergence form

div4(S,−ρ0 ġ)+ b = 0 (47)

where div4(A, v) := divA + v̇ with A a tensor field and v a vector field. A standard argument involving inte-
gration of both sides of (47) over cylinders centered at (X, t̂(X))with axes parallel to the normal (−∇ t̂(X), 1)
yields the relation

[S](X, t̂(X))(−∇ t̂(X))− ρ0 [ġ](X, t̂(X)) = 0. (48)

If the chosen normal points into the compact phase, this jump relation for linear momentum becomes

DG�(F(I + ξca ⊗ n, θ)∇ t̂(X)+ ρ0(vc − v�) = 0. (49)

(The same relation results in the case where the normal points into the loose phase.) The fact that the stress in
the loose phase vanishes accounts for the fact that ξ� does not appear in the jump condition (49) corresponding
to the balance of linear momentum.

The First Law of Thermodynamics (33) in local form can be written as follows:

ε̇ = S · ∇ ġ − divq + r = div(ST ġ − q)− divS · ġ + r

= div(ST ġ − q)− ρ0 g̈ · ġ + r + b · ġ

= div(ST ġ − q)+ (b · g − 1
2ρ0 |ġ|2)· + r,

so that the First Law assumes the divergence form

div4(−ST ġ + q, ε + 1
2ρ0 |ġ|2 − b · g) = r.

This relation leads in the standard way to the jump condition

[(−ST ġ + q)] · (−∇ t̂(X))+ [ε + 1
2ρ0 |ġ|2 − b · g] = 0. (50)

Because we have assumed that the temperature field is a constant, it follows from our earlier assumptions
on q that q is zero in both the loose and compact phases, so that its jump also vanishes. Because we have
assumed that b is a constant, the jump condition (56) introduced below implies that [g · b] = 0, and (50) has
the following form when the chosen normal points into the compact phase:

(DG�(F(I + ξca ⊗ n), θ)T
(

vc + t̂(X)

ρ0
b

)

· ∇ t̂(X)+ εc − ε�

+1

2
ρ0

(

∣

∣

∣

∣

vc + t̂(X)

ρ0
b

∣

∣

∣

∣

2

−
∣

∣

∣

∣

v� + t̂(X)

ρ0
b

∣

∣

∣

∣

2
)

= 0 (51)
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Here, we have used the fact that the stress in the loose phase is zero. (The same relation results when the normal
points into the loose phase.)

The jump condition corresponding to the Second Law is most easily obtained by rewriting the local form
of the Second Law in the divergence form

η̇ ≥ −div
(q

θ

)

+ r

ϑ

or, equivalently,

div4

(q

θ
, η

)

≥ r

ϑ
. (52)

This relation yields the jump condition

[q

θ

]

(X, t̂(X)) · (−∇ t̂(X))+ [η](X, t̂(X)) ≥ 0,

and the vanishing of the heat flux q on both sides of the interface t = t̂(X) along with the entropy relation
(37) implies the simpler relation

[Dθ�] ≤ 0. (53)

Taking into account the fact that the free energy response function � depends upon G and θ and recalling the
values of G in the loose and compact phases, we conclude that when the chosen normal (−∇ t̂(X), 1) points
into the compact phase the jump condition corresponding to the Second Law becomes

Dθ�(F(I + ξca ⊗ n), θ) ≤ Dθ�(ζmin I, θ). (54)

[The opposite relation results when the chosen normal (−∇ t̂(X), 1) points into the loose phase.] We note here
that the formula for the internal energy (39) implies that the jump condition corresponding to the Second Law
(53) is equivalent to the assertion that the jump in internal energy at the interface is no less than the jump in
free energy:

[ε] = [ψ + θη] = [ψ] + θ [η]
≥ [ψ] (55)

where we have used the fact that [θ ] = 0. For example, if the normal at X points into the compact phase, the
free energy cannot decrease [by virtue of the relation (21)]; consequently, (55) tells us that the internal energy
also cannot decrease as a result of the transformation from the loose phase to the compact phase: εc − ε� ≥ 0.

Finally, we impose the requirement that the position of material points not experience discontinuities at a
phase interface:

[g] = 0. (56)

The formulas (27) and (28) yield the following form of the jump relation for position:

t̂(X)(vc − v�) = (ξ� − ξc)(Fa ⊗ n)(X − X0). (57)

Taking the gradient of both sides of (57) we obtain the useful relation

(vc − v�)⊗ ∇ t̂(X) = (ξ� − ξc)Fa ⊗ n. (58)

[Both of these relations also are valid when the normal (−∇ t̂(X), 1) to the phase interface points into the loose
phase.] When ξ� − ξc 
= 0, the last relation implies that the velocity difference vc − v� and the vector Fa are
colinear, as are the gradient ∇ t̂(X) and the vector n.
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8.2 Implications of the jump conditions

The jump condition associated with the First Law (51) contains the term

(DG�(F(I + ξca ⊗ n), θ)T vc · ∇ t̂(X) = vc · DG�(F(I + ξca ⊗ n), θ)∇ t̂(X),

which leads us to take the inner product of both sides of the jump condition for balance of linear momentum
(49) with the vector vc. When the two resulting expressions for vc · DG�(F(I + ξca ⊗ n), θ)∇ t̂(X) are
equated, we find that

εc − ε� + 1

2
ρ0

(

∣

∣

∣

∣

vc + t̂(X)

ρ0
b

∣

∣

∣

∣

2

−
∣

∣

∣

∣

v� + t̂(X)

ρ0
b

∣

∣

∣

∣

2
)

= ρ0(vc − v�) · vc − ρ−1
0 t̂(X) DG�(F(I + ξca ⊗ n), θ)∇ t̂(X) · b

which is equivalent to the relation

2t̂(X) { (v� − vc)− ρ−1
0 DG�(F(I + ξca ⊗ n), θ)∇ t̂(X)} · b = 2(εc − ε�)− ρ0 |vc − v�|2 .

We assume for the sake of simplicity that the function t̂ is affine, so that ∇ t̂(X) is independent of X . Because
the previous relation must hold for every point X in an open region in the reference configuration, and because
only t̂ depends upon X , there can be a non-trivial phase interface only if

{ (v� − vc)− ρ−1
0 DG�(F(I + ξca ⊗ n), θ)∇ t̂} · b = 0, (59)

and the jump relation for the First Law reduces to

ρ0 |vc − v�|2 = 2(εc − ε�). (60)

This relation strengthens the conclusion drawn above from the relation (55) about εc − ε�. That conclusion
amounted to the assertion that when the normal at (X, t̂(X)) points into the compact phase, then εc − ε� ≥ 0.
However, the relation (60) does not depend upon whether or not the normal to the phase interface points into
the compact phase and also leads to the conclusion εc − ε� ≥ 0. Therefore, at every point (X, t̂(X)) on the
phase interface there holds εc − ε� ≥ 0, independent of the orientation of the normal (−∇ t̂(X), 1) relative to
the loose and compact phases.

The relations (39) and (60) yield the formula

ρ0 |vc − v�|2 = 2(�c − θ(Dθ�)c)− 2(�� − θ(Dθ�)�) (61)

where, in detail, the right-hand side of (61) is the expression

2 (�(F(I + ξc a ⊗ n), θ)− θDθ�(F(I + ξc a ⊗ n), θ))

−2 (�(ζmin I, θ)− θDθ�(ζmin I, θ)). (62)

Consequently, the formula (61) expresses the relative speed of the compact phase and of the loose phase as a
function of the measure of deformation ξc in the compact phase.

In order to relate the measure of deformation ξ� to the corresponding measure ξc in the compact phase, we
use (58) and (49) in the following calculation:

(ξ� − ξc)DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)

= DG�(F(I + ξc a ⊗ n), θ) · ((vc − v�)⊗ ∇ t̂(X)
)

= tr
(

DG�(F(I + ξc a ⊗ n), θ)
(∇ t̂(X)⊗ (vc − v�)

))

= tr
(

DG�(F(I + ξc a ⊗ n), θ)∇ t̂(X)⊗ (vc − v�)
)

= DG�(F(I + ξc a ⊗ n), θ)∇ t̂(X) · (vc − v�)

= −ρ0 |vc − v�|2 . (63)
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From the discussion at the end of the previous section, the stress component DG�(F(I +ξca⊗n), θ)·(Fa⊗n)
vanishes at exactly one point ξc = ξ0 in Ia,n , so that (63) and (61) yield

ξ� = ξc − 2(�c − θ(Dθ�)c)− 2(�� − θ(Dθ�)�)

DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)
for all ξc ∈ Ia,n\{ξ0}. (64)

It was pointed out above that the velocity difference vc − v� and the vector Fa are colinear when ξ� 
= ξc;
this and (61) tell us that

vc − v� = ±|vc − v�|
|Fa| Fa

= ±{(2(�c − θ(Dθ�)c)− 2(�� − θ(Dθ�)�)) /ρ0}1/2

|Fa| Fa (65)

for all ξc ∈ Ia,n\{ξ0}. The formula (57) now yields a formula for t̂(X) through the relations (64) and (65):

t̂(X)(vc − v�) = (n · (X − X0)(ξ� − ξc)Fa ⇐⇒
±t̂(X)

{2 ((�c − θ(Dθ�)c)− (�� − θ(Dθ�)�)) /ρ0}1/2

|Fa| Fa

= −(n · (X − X0)
2 ((�c − θ(Dθ�)c)− (�� − θ(Dθ�)�))

DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)
Fa.

This relation reduces to the formula

t̂(X) = ∓|Fa| {2ρ0 ((�c − θ(Dθ�)c)− (�� − θ(Dθ�)�))}1/2

DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)
n · (X − X0), (66)

which implies

∇ t̂(X) = ∓|Fa| {2ρ0 ((�c − θ(Dθ�)c)− (�� − θ(Dθ�)�))}1/2

DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)
n.

The reciprocal of the magnitude of ∇ t̂(X) is the speed of the phase interface �:

� = |DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)|
|Fa| {2ρ0 ((�c − θ(Dθ�)c)− (�� − θ(Dθ�)�))}1/2 , (67)

and we note that the ratio �/ |vc − v�| of the speed of the phase interface � to the relative speed |vc − v�| of
the compact and loose phases then is given by

�

|vc − v�| = |DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)|
2 ((�c − θ(Dθ�)c)− (�� − θ(Dθ�)�))

. (68)

We recall that the relations (66), (67), and (68) were derived under the restriction ξc 
= ξ0; moreover, the choice
of signs in (65) and (66) are opposite one another.

8.3 Inequalities that restrict ξc, a, n, and F

In the previous section we obtained formulas that express quantities significant for the description of coexis-
tent loose and compact phases in terms of a single scalar ξc, the two unit vectors a, n, and the tensor F that
control the macroscopic deformation gradient ∇gc = F(I + ξca ⊗ n) in the compact phase. Specifically, the
Accommodation Inequality in the loose phase (29) in conjunction with the formula (64), the jump condition
associated with the Second Law (53), and the relation (61) provide inequalities that restrict ξc, a, n, and F , and
we study in this section sufficient conditions for the satisfaction of these inequalities. We recall from Sect. 8.2
that the jump conditions and the assumption that the phase interface is given by an affine mapping imply the
restriction (59) on the orientation of the body force and the phase interface. In view of the relations (65) and
(66), this restriction becomes

{

Fa
|Fa| − |Fa|

DG�(F(I+ξc a⊗n),θ)·(Fa⊗n)DG�(F(I + ξca ⊗ n), θ)n
}

· b = 0. (69)

We make assumptions in what follows in order that F, a, n, ξc, and b satisfy this condition.
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8.3.1 Sufficient conditions for a loose-to-compact transition

It is useful to treat two cases separately, and we first assume that the material at X transforms from the loose
to the compact phase at time t̂(X), that is, the normal (−∇ t̂(X), 1) points into the compact phase. The jump
condition associated with the Second Law (53) then becomes (54), which we write in the abbreviated form

(Dθ�)c ≤ (Dθ�)�. (70)

However, the inequality (21) amounts to the assertion�c ≥ ��, so that if ξc satisfies (70), then it also satisfies

εc − ε� = (�c − θ(Dθ�)c)− (�� − θ(Dθ�)�)

= (�c −��)− θ((Dθ�)c − (Dθ�)�) ≥ 0.

This inequality is precisely the one provided by the relation (61), and we conclude that in the loose to compact
transition the inequality

εc = (�c − θ(Dθ�)c) ≥ (�� − θ(Dθ�)�) = ε� (71)

need not be considered separately.
The Accommodation Inequality (29) and the formula (64) yield

ζ 3
min

det F
≤ 1 + ξca · n − a · n

2((�c − θ(Dθ�)c)− (�� − θ(Dθ�)�))

DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)
(72)

in which not only the denominator of the fraction on the right but also its numerator depends upon ξc 
= ξ0, a, n,
and F [see (62) for the explicit dependence]. For given F, a, and n we now provide sufficient conditions that
the inequalities (70) and (72) be satisfied in an interval included in Ia,n\{ξ0}.
Remark 2 Let F ∈ Lin+ and a, n unit vectors be given, let ξ0 be the unique point ξc in Ia,n at which the stress
component DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n) vanishes, and suppose that

Dθ�(F(I + ξ0 a ⊗ n), θ) < Dθ�(ζmin I, θ). (73)

If a · n > 0 then there exists δ > 0 such that the inequalities (70) and (72) are satisfied for all ξc ∈ (ξ0 − δ, ξ0).
Moreover, there is a choice of sign in the formula (66) that assures that the normal (−∇ t̂(X), 1) points into
the compact phase. If a · n < 0 then there exists δ > 0 such that the inequalities (70) and (72) are satisfied for
all ξc ∈ (ξ0, ξ0 + δ), and the opposite choice of sign in the formula (66) assures that the normal (−∇ t̂(X), 1)
points into the compact phase. If a · n = 0 and if ζ 3

min ≤ det F then (72) is satisfied for all ξc ∈ R, and there
exists δ > 0 such that the inequality (70) is satisfied for all ξc ∈ (ξ0 − δ, ξ0) ∪ (ξ0, ξ0 + δ). For each of the
intervals (ξ0 − δ, ξ0) and (ξ0, ξ0 + δ), there is a choice of sign in the formula (66) that assures that the normal
(−∇ t̂(X), 1) points into the compact phase.

Proof The inequality (73) implies that there exists δ1 > 0 such that

Dθ�(F(I + ξc a ⊗ n), θ) < Dθ�(ζmin I, θ)

holds for all ξc ∈ [ξ0 − δ1, ξ0 + δ1]. It follows from this and the inequality (21) that

ξ �→ 2 (�(F(I + ξ a ⊗ n), θ)− θDθ�(F(I + ξ a ⊗ n), θ))

−2 (�(ζmin I, θ)− θDθ�(ζmin I, θ))

has a strictly positive minimum on [ξ0−δ1, ξ0+δ1]. The properties of ξ �→ DG�(F(I +ξ a⊗n), θ)·(Fa⊗n) =
f ′(ξ) established in Sect. 7 tell us that, on the interval (inf Ia,n, ξ0), the function f ′ is negative-valued and
has limit zero at ξ0, while on the interval (ξ0, sup Ia,n) the function f ′ is positive-valued and has limit zero at
ξ0. These statements and (72) imply the desired conclusions when a · n 
= 0. When a · n = 0 the inequality
(72) reduces to ζ 3

min ≤ det F , and the inequality (70) follows from the first statement in this proof. ��
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The inequality (73) amounts to the assertion that the entropy in the loose phase is less than the entropy
in the compact phase associated with the particular value ξc = ξ0 of the scalar deformation parameter in
the compact phase. In this context it also is worth observing that, in the loose phase, all of the components
of the stress vanish, while in the compact phase with ∇gc = F(I + ξ0a ⊗ n) only the stress component
DG�(F(I + ξ0 a ⊗ n), θ) · (Fa ⊗ n) need vanish. This observation suggests that the entropy in the loose
phase may be lower than that in compact phase with ∇gc = F(I + ξ0a ⊗ n), in agreement with (73).

We conclude that, under the hypotheses of Remark 2 and under the assumption b = 0 (so that (69) is satisfied
identically in ξc), there is a non-trivial interval of numbers ξc and a choice of sign in the formula (66) such that
the body admits a moving interface that transforms material from the loose phase (with ∇g� = F(I +ξ�a ⊗n)
and with ξ� given by the formula (64)) into the compact phase (with ∇gc = F(I + ξca ⊗ n)). When a · n = 0,
the point ξc = ξ0 is excluded from both intervals (ξ0 − δ, ξ0) and (ξ0, ξ0 + δ), because ξc = ξ0 in (63) implies
vc = v� which, in turn, implies εc = ε�, contradicting (73). In all cases, the interface separating the loose
and compact phases is planar and moves with speed given by (67). Each phase moves as a (pre-strained) rigid
body, and the relative velocity of motion of the two phases is given by the formula (65) with choice of sign the
opposite of the choice of sign in the formula (66).

8.3.2 Sufficient conditions for a compact-to-loose transition

We note that the hypothesis (73) and the jump condition associated with the Second Law (53) imply that
the body does not admit a moving interface that transforms the material from the compact phase to the loose
phase: when the normal to the phase boundary points from the compact phase into the loose phase, then the two
inequalities (73) and (53) are opposite and, hence, contradictory. Of course, the assumption that the opposite
of the inequality (73) holds, that is,

(Dθ�)c = Dθ�(F(I + ξ0 a ⊗ n), θ) > Dθ�(ζmin I, θ) = (Dθ�)�, (74)

permits one to repeat the arguments that established Remark 2 to conclude that the inequalities (29) and (53)
can be satisfied when the normal (−∇ t̂(X), 1) points into the loose phase. However, for this orientation of the
normal, the inequality

εc = (�c − θ(Dθ�)c) ≥ (�� − θ(Dθ�)�) = ε� (75)

provided by (61) must be checked separately, since it generally is not a consequence of (29) and (53). To this
end, we may use (74) to rewrite the inequality (75) as

�c −�� ≥ θ(Dθ�)c − θ(Dθ�)� ≥ 0.

This inequality, as well as both of (29) and (53), can be satisfied for ξc close to ξ0 if we strengthen (74) as
follows:

�(F(I + ξ0 a ⊗ n), θ)−�(ζmin I, θ)

> θDθ�(F(I + ξ0 a ⊗ n), θ)− θDθ�(ζmin I, θ) > 0. (76)

8.3.3 Sufficient conditions for reversible transitions

The considerations in the previous subsubsections indicate in the present framework that phase transitions
from loose to compact phases via moving planar interfaces are more widely available than transitions from
compact to loose phases. Moreover, the sufficient conditions that we have provided for transitions in one sense
and the sufficient conditions that we have provided for transitions in the opposite sense are mutually exclusive.
Nevertheless, there are special circumstances under which transitions in both senses can occur.

Remark 3 Suppose that b = 0 and that, for a given deformation measure ξ̂c ∈ Ia,n\ {ξ0} for the compact phase,
the Helmholtz free energy response function � at the given, constant temperature field θ satisfies

Dθ�(F(I + ξ̂c a ⊗ n), θ) = Dθ�(ζmin I, θ) (77)

and that the inequality (72), with ξc = ξ̂c, also is satisfied. It follows that both the compact-to-loose and
the loose-to-compact transitions corresponding to the structured deformations (gc,∇gc) and (g�, ζmin I ) are
available to the body for ξc = ξ̂c and for ξ� given by (64) with ξc = ξ̂c.
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8.4 An infinite train of phase interfaces in the case of reversible transitions

We assume in this section that the body force field vanishes, so that (69) is satisfied identically in ξc, and
we suppose that the sufficient conditions (77) and (72) for reversible transitions set forth in Remark 3 are
satisfied. Consequently, we may choose a solution ξc = ξ̂c of (77) that satisfies (72), and we denote by ξ̂� the
corresponding strain in the loose phase given by the formula (64) with ξc = ξ̂c. The formula (66) for t̂ and the
formula (65) for the velocity difference vc − v� reduce by means of (77) to

t̂(X) = ∓|Fa|
{

2ρ0(�(F(I+ξ̂c a⊗n))−�(ζmin I ))
}1/2

DG�(F(I+ξ̂c a⊗n),θ)·(Fa⊗n)
n · (X − X0) (78)

vc − v� = ±
{

2(�(F(I+ξ̂c a⊗n))−�(ζmin I ))/ρ0

}1/2

|Fa| Fa, (79)

respectively, and we note that, among the formulae and relations that govern jumps at the phase interface, only
the formulas (78) and (79) involve the particular choice of sign ±. If we put

λ := λ(F, ξ̂ c, a, n, θ) :=
|Fa|

{

2ρ0(�(F(I + ξ̂ c a ⊗ n))−�(ζmin I ))
}1/2

DG�(F(I + ξ̂ c a ⊗ n), θ) · (Fa ⊗ n)
(80)

and

μ := μ(F, ξ̂ c, a, n, θ) :=
{

2(�(F(I + ξ̂ c a ⊗ n))−�(ζmin I ))/ρ0

}1/2

|Fa| , (81)

then (78) and (79) become

t̂(X) = ∓λn · (X − X0), vc − v� = ±μFa. (82)

We use the notation t̂+ and t̂− as well as (vc − v�)+ and (vc − v�)− to indicate the choice of sign made in the
formulas (82). We note also from (67) that the speed � of a phase interface in the present context is given by

� =
∣

∣

∣DG�(F(I + ξ̂c a ⊗ n), θ) · (Fa ⊗ n)
∣

∣

∣

|Fa| {2ρ0 ((�c −��)}1/2 = |λ|−1 . (83)

For definiteness, we assume that the stress component

DG�(F(I + ξ̂c a ⊗ n), θ) · (Fa ⊗ n)

is negative, so that the coefficient λ = λ(F, ξ̂c, a, n, θ) of n · (X − X0) in (82) is negative. In addition, we may
conclude from (64) that ξ̂� > ξ̂c. We now construct a continuous, piecewise smooth, motion of the semi-infinite
reference slab of height H :

S ={X ∈ E | 0 < n · (X − X0) < H} (84)

utilizing the motions gc and g� defined in the relations (27) and (28) with b = 0. It is convenient to indicate
explicitly the dependence of these functions on vc and v�, respectively:

gc = gvc
c and g� = gv�� .

For a particular choice of velocity V in the compact phase, we require that the motion g under construction
agree with gV

c on the space-time region

R0=
{

(X , t) | X ∈ S and λH ≤ t < t̂+(X) = λn · (X − X0)
}

, (85)

so that we define

g = gV
c and G = ∇gV

c on R0. (86)
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We specify that a compact-to-loose transition occur on the space-time face Fc,� of R0 given by

Fc,� := {

(X , t) | X ∈ S and t = t̂+(X) = λn · (X − X0)
}

. (87)

Because λ is negative, this specification implies that the points in the slab nearer the plane n · (X − X0) = H
undergo the compact-to-loose transition before points farther from that plane. The choice of the plus sign “+”
in the specification t = t̂+(X) in (87) requires that we choose the velocity v� in the loose phase so that by (82)

V − v� = vc − v� = (vc − v�)− = −μFa.

Therefore, we have v� = V + μFa, and we require that the motion g agree with gV +μFa
� on the space-time

region

R1=
{

(X , t) | X ∈ S and t̂+(X) < t < t̂+(X)+ H

�

}

,

bounded by the parallel space-time planes “t = t̂+(X)” and “t = t̂+(X)+ H
�

”, that is, we define

g = gV +μFa
� and G = ζmin I on R1. (88)

Here, the quotient H/� = −λH = |λ| H represents the time required for the phase interface to traverse the
slab S.

At this point we have defined g on the space-time region R0 ∪R1 in such a way that each point X in S from
the time λH until the time t̂+(X) is in the compact phase moving with velocity V . From the time t̂+(X) until
t̂+(X)+ |λ| H the point X is in the loose phase moving with velocity V + μFa. We note that the space-time
plane “t = t̂+(X) + |λ| H” differs by a translation from “t = t̂+(X)” by amount |λ| H in the t-direction.
Although the untranslated plane “t = t̂+(X)” already has been confirmed as an interface that admits reversible
transitions between the loose and compact phases, the translated plane has not been so identified. However,
we here verify that the translated plane also admits such reversible transitions. In fact, if we seek a space-time
surface “t = t̃(X)” such that a time-translated version g̃� of the loose phase deformation gV +μFa

� agrees with
a corresponding time-translated version g̃c of gvc

c on the space-time plane “t = t̃(X)”, then we require

X0 + F(I + ξ̂ �a ⊗ n)(X − X0)+ t̃(X)(V + μFa)

= gv�� (X, t̃(X))

= g̃c(X, t̃(X))

= gvc
c (X, t̃(X)− t1)

= X0+F(I + ξ̂ ca ⊗ n)(X − X0)+ (t̃(X)− t1)vc.

We conclude from this relation that

t̃(X)(vc − (V + μFa)) = (ξ̂� − ξ̂c)(n · (X − X0))Fa + t1vc

and, therefore, that

(vc − (V + μFa))⊗ ∇ t̃(X) = (ξ̂� − ξ̂c)Fa ⊗ n.

This relation agrees with (58), obtained in Sect. 8.1. The subsequent analysis in that subsection remains valid
with ∇ t̂(X) replaced by ∇ t̃(X), and we conclude that we may replace t̂(X) by t̂(X) + t1 and gvc

c (X, t) by
gvc

c (X, t − t1) throughout all the consequences of the jump conditions obtained above without affecting their
validity.

Therefore, we may put t1 := H/� = |λ| H = −λH and specify that a loose-to-compact transition occur
on the face

F�,c := {

(X , t) | X ∈ S and t = t̂+(X)+ |λ| H
}

of R1 and, accordingly, we again must choose the minus sign “−” in relating the velocities V + μFa in the
existing loose phase and v(1)c in the newly formed compact phase:

v(1)c − (V + μFa) = (vc − v�)− = −μFa.
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Fig. 1 Infinite train

We have v(1)c = V , that is, the velocity v(1)c in the newly formed compact phase equals the velocity V in the
original compact phase. We require that the motion g under construction be the corresponding time-translation
of gV

c on the space-time region

R2 = {

(X , t) | X ∈ S and t̂+(X)+ |λ| H < t < t̂+(X)+ 2 |λ| H
}

,

so that we define

g(X, t) = gV
c (X, t − |λ| H) and G(X, t) = ∇gV

c (X, t − |λ| H) on R2. (89)

We note that the above specification of (g,G) on the region R0∪R1∪R2 implies that at time t = |λ| H
the entire slab S again is in the compact phase moving with velocity V . This observation provides the basis
for a recursive specification of (g,G) on S× (0,∞) in terms of an infinite train of moving phase interfaces.
Although we do not provide the details of the recursive definition, we describe some features briefly. The pair
(g,G) so obtained has the property that, for each non-negative integer m, at time 2m |λ| H the entire body
is in the loose phase with ξ� = ξ̂�, while at time (2m − 1) |λ| H the entire body is in the compact phase
with ξc = ξ̂c. No matter what the time t , those points in the compact phase at time t move with velocity V ,
while those in the loose phase at time t move with velocity V + μFa. Each planar phase interface in the
reference configuration forms at the end of the slab containing the point X0 + Hn and reaches the end of the
slab containing the point X0 at the same time as the next phase interface forms at the end containing X0 + Hn.

For the case when V = 0, the velocity in the compact phase vanishes, and Fig. 1 indicates schematically
the trajectories of the points X0 (left-most broken line) and X0 + Hn (right-most broken line) for the time
interval (− |λ| H, 3 |λ| H) during the motion just described.

9 Drastic reduction or increase in deformation levels via phase transitions

When a · n > 0 the relation ξc ∈ (ξ0 − δ, ξ0) identified in Remark 2 for loose-to-compact transitions implies
that that the stress component

DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n)

is negative, and the formula (64) tells us that ξ� > ξc and that ξ� tends to +∞ as ξc tends to ξ0 from below.
Consequently, as the deformation parameter ξc varies in the bounded interval (ξ0 − δ, ξ0), the deformation
parameter ξ� varies through an unbounded interval, and the unbounded family of macroscopic deformations
F(I + ξ�a ⊗ n) in the loose phase are transformed into the bounded family of macroscopic deformations
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F(I + ξca ⊗ n) in the compact phase. Analogously, when a · n < 0 the relation ξc ∈ (ξ0, ξ0 + δ) identified in
Remark 2 implies that the stress component DG�(F(I + ξc a ⊗ n), θ) · (Fa ⊗ n) is positive, and the formula
(64) yields ξ� < ξc, with ξ� tending to −∞ as ξc tends to ξ0 from above. Similar conclusions can be drawn
when a · n = 0.

Remark 4 For the family of loose-to-compact transitions in Remark 2, with the deformation parameter ξc
near ξ0, the deformation parameter |ξ�| tends to +∞ as ξc tends to ξ0, that is, the macroscopic deforma-
tion F(I + ξ�a ⊗ n) in the loose phase before the transition is significantly larger than the deformation
F(I + ξca ⊗ n) present in the compact phase after the transition. Consequently, the loose-to-compact tran-
sition provides a mechanism for reducing significantly the macroscopic changes in shape associated with
macroscopic deformations of the form F(I +ξa ⊗n). Similarly, for the family of compact-to-loose transitions
described in Sect. 8.3.2, with the deformation parameter ξc near ξ0, the deformation parameter |ξ�| tends to
+∞ as ξc tends to ξ0, that is, the macroscopic deformation F(I + ξca ⊗ n) in the compact phase before the
transition is significantly smaller than the deformation F(I + ξ�a ⊗ n) present in the loose phase after the
transition. Consequently, the compact-to-loose transition provides a mechanism for increasing significantly
the macroscopic changes in shape associated with macroscopic deformations of the form F(I + ξa ⊗ n).

The higher level of deformation in the loose phase identified above suggests that, when overall changes
in shape of the body at a given time t are limited by the environment, the dimensions of the region in the
reference configuration occupied by the loose phase should be significantly smaller in the direction n normal
to the phase interface t̂(X) = t than the dimensions of the adjacent region occupied by the compact phase.
When multiple phase interfaces appear, we expect that the loose phase over time would be confined to narrow
bands within the body. The formation of narrow bands of highly deformed material in a continuum usually is
designated by the term “strain localization,” frequently is observed and is studied in aggregates such as sand,
and often is connected to a notion of material instability (see [15], for example).

10 Non-homogeneous deformations in the compact phase arising from plane progressive waves
with small associated strains

Our analysis in Sects. 5–9 addresses the case in which each phase experiences a homogeneous deformation
(27), (28). Here we broaden the analysis by allowing the compact phase to experience non-homogeneous
deformations in the form of plane progressive waves with small associated strains. Consequently, we expect
to encounter not only moving interfaces that separate loose and compact phases but also moving disturbances
within the compact phase associated with the propagation of waves within a body with isotropic, linearly
elastic response.

10.1 Motions in the loose and compact phases: balance laws

We replace the special class of motions (27), (28) by motions of the form

gc(X, t) = X0 + Fc(X − X0)+ ϕ((X − X0) · n + st) e + t2

2ρ0
b (90)

g�(X, t) = X0 + F�(X − X0)+ tv� + t2

2ρ0
b, (91)

where Fc and F� are tensors with positive determinant, ϕ is a mapping from a subset of R into R, s is a real
number, and v�, e, and n are vectors with |e| = |n| = 1. Here, |s| represents the speed of the progressive wave
in the compact phase, n its orientation, and e its direction. Denoting the derivative of ϕ by ϕ ′, we have

∇gc(X, t) = Fc + ϕ ′((X − X0) · n + st) e ⊗ n

ġc(X, t) = sϕ ′((X − X0) · n + st) e + t

ρ0
b,

g̈c(X, t) = s2ϕ ′′((X − X0) · n + st) e + 1

ρ0
b,
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and it follows that

S(X, t) = DG�(∇gc(X, t), θ)

= DG�(Fc, θ)+ ϕ ′((X − X0) · n + st) D2
G�(Fc, θ)[e ⊗ n] + o(ϕ ′),

S(X, t) · ∇ ġc(X, t) = sϕ ′′((X − X0) · n + st) DG�(Fc, θ) · (e ⊗ n)+ O(ϕ ′ϕ ′′),

and

divS(X, t) = ϕ ′′((X − X0) · n + st) (D2
G�(Fc, θ)[e ⊗ n])n + divo(ϕ ′).

Consequently, the balance of linear momentum in the compact phase implies that

ϕ ′′((X − X0) · n + st)
(

(D2
G�(Fc, θ)[e ⊗ n])n − ρ0s2e

) = divo(ϕ ′),

and this relation will be satisfied to within terms of order divo(ϕ ′) if the linear mapping v �−→
(D2

G�(Fc, θ)[v ⊗ n])n has e as an eigenvector with corresponding eigenvalue ρ0s2. In particular, the lin-
ear mapping must have a positive eigenvalue in order that balance of linear momentum be satisfied to the given
approximation for the special motion (90) with s 
= 0 and ϕ ′′((X − X0) · n + st) 
= 0:

(D2
G�(Fc, θ)[e ⊗ n])n = ρ0s2e. (92)

This relation permits us to express the speed of the progressive wave in terms of the elasticity tensor D2
G�(Fc, θ)

and the product e ⊗ n:

|s| = (ρ−1
0 D2

G�(Fc, θ)[e ⊗ n] · (e ⊗ n))
1
2 . (93)

The First Law (33) in the case of a constant temperature field θ and zero external radiation r reduces to

(ψ + θη)· = S · ∇ ġ

which implies

DG� · Ġ + θDG(−Dθ�) · Ġ = DG� · Ḟ,

or, equivalently, for the compact phase (since G = F):

0 = Dθ DG�(∇gc, θ) · ∇ ġc

= ϕ ′′((X − X0) · n + st) {s Dθ DG�(Fc, θ) · (e ⊗ n)+ o(1)}.

Consequently, for the case s 
= 0 and for ϕ ′′((X − X0) · n + st) 
= 0, the First Law is satisfied in the compact
phase to within terms of order ϕ ′ϕ′′ if and only if

Dθ DG�(Fc, θ)n · e = Dθ DG�(Fc, θ) · (e ⊗ n) = 0. (94)

This relation also guarantees the satisfaction in the compact phase of the Second Law to within terms of the
same order. For the same reasons as given in Sect. 6, the field relations are satisfied exactly in the loose phase.

The Accommodation Inequality (5) is satisfied in the compact phase (with equality) and is satisfied in the
loose phase if and only if

ζ 3
min = det G� ≤ det ∇g� = det F�, (95)

a condition that will be expressed below in terms of quantities defined in the compact phase by utilizing jump
conditions at a phase interface.
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10.2 Jump conditions at a phase interface

We assume that a phase interface as described in Sect. 8.1 separates loose and compact phases in the reference
configuration, and we restrict our attention to the following special form of the mapping t̂ :

t̂(X) = t̃((X − X0) · n) (96)

with n a unit normal to the progressive wave (90) passing through the compact phase. In other words, the
phase boundary and the progressive wave in the compact phase have the same orientation in the reference
configuration. The condition that g�(X, t̂(X)) = gc(X, t̂(X)) to be satisfied for X in an open subset of the
reference configuration now reads

(Fc − F�)(X − X0)+ ϕ(π(X)+ st̃(π(X))) e − t̃(π(X)) v� = 0, (97)

with π(X) := (X − X0) · n, and represents a restriction on the mapping t̃ . The jump condition for balance of
linear momentum (48) here takes the form

t̃ ′(π(X))
{

DG�(Fc, θ)n + ϕ ′(π(X)+ st̃(π(X)) D2
G�(Fc, θ)[e ⊗ n]n + o(ϕ ′)

}

+ρ0(sϕ
′(π(X)+ st̃(π(X))) e − v�) = 0,

and the relation (92) yields
{

t̃ ′(π(X))DG�(Fc, θ)n − ρ0v�
} + ρ0sϕ ′ (π(X)

{

t̃ ′(π(X))s + 1
})

e + o(ϕ ′) = 0 (98)

Sufficient conditions in order that this relation be satisfied to within terms o(ϕ ′) are

v� = t̃ ′(π(X))
ρ0

DG�(Fc, θ)n (99)

and t̃ ′(π(X)) = −s−1 , or

t̂ (X) = t̃(π(X))) = − 1
s (X − X0) · n, (100)

where, without loss of generality, we have imposed the requirement t̂ (X0) = 0. In particular, (100) tells us that
the speed of the phase interface equals the speed of the progressive wave in the compact phase. The relations
(98), (99), and (100) then yield ϕ(0) = 0,

v� = − 1
sρ0

DG�(Fc, θ)n, (101)

and

(Fc − F�)(X − X0)− 1
ρ0s2 ((X − X0) · n )DG�(Fc, θ)n = 0.

The last relation implies the formula

F� = Fc − 1
ρ0s2 DG�(Fc, θ)n ⊗ n

= Fc − ({(D2
G�(Fc, θ)[e ⊗ n])n} · e)−1 DG�(Fc, θ)n ⊗ n (102)

for the deformation F� in the loose phase in terms of quantities associated with the compact phase, and it also
implies the following version of (91):

g�(X, t) = X0 + Fc(X − X0)− 1
ρ0s2 (n · (X − X0)+ st)DG�(Fc, θ)n + t2

2ρ0
b. (103)

From (102) we also have

det F� = det
(

Fc

(

I − 1
ρ0s2 F−1

c DG�(Fc, θ)n ⊗ n
))

= det Fc

(

1 − 1
ρ0s2 DG�(Fc, θ)n · F−T

c n
)

,
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and the Accommodation Inequality in the loose phase (95) becomes

ζ 3
min ≤ det Fc

(

1 − 1
ρ0s2 DG�(Fc, θ)n · F−T

c n
)

. (104)

The jump condition associated with the First Law

[(−ST ġ + q)] · (−∇ t̂(X))+
[

ε + 1

2
ρ0 |ġ|2

]

= 0, (105)

written when the normal to the phase interface points into the compact phase, leads to the individual terms

[(−ST ġ + q)] · (−∇ t̂(X))+o(ϕ ′)
= (sϕ ′(0)e−π(X)

sρ0
b) · (− 1

s (DG�(Fc, θ)n + ϕ ′(0)D2
G�(Fc, θ)[e ⊗ n]n)

= π(X)
s2ρ0

DG�(Fc, θ)n · b + ϕ ′(0)(π(X)e · b − DG�(Fc, θ)n · e), (106)

[ε] + o(ϕ ′) = [� − θDθ�]

= �(Fc, θ)− θDθ�(Fc, θ)− (�(ζmin I, θ)− θDθ�(ζmin I, θ))

+ϕ ′(0) (DG�(Fc, θ)− θDθ DG�(Fc, θ)) n · e, (107)

[|ġ|2] + o(ϕ ′) = |ġc|2 − |ġ�|2

=
∣

∣

∣sϕ ′(0)e + t̂(X)
ρ0

b
∣

∣

∣

2 −
∣

∣

∣v� + t̂(X)
ρ0

b
∣

∣

∣

2

=
∣

∣

∣

∣

∣

sϕ ′(0)e + − 1
s π(X)
ρ0

b

∣

∣

∣

∣

∣

2

−
∣

∣

∣

∣

∣

− 1
sρ0

DG�(Fc, θ)n + − 1
s π(X)
ρ0

b

∣

∣

∣

∣

∣

2

= − 1
s2ρ2

0
|DG�(Fc, θ)n|2 − 2π(X)

s2ρ2
0

DG�(Fc, θ)n · b

−2ϕ ′(0)π(X)
ρ0

e · b. (108)

The relations (106)–(108) then permit us to write (105) in the simple form

�(Fc, θ)− θDθ�(Fc, θ)− (�(ζmin I, θ)− θDθ�(ζmin I, θ))

− 1
2ρ0s2 |DG�(Fc, θ)n|2 − ϕ ′(0)θDθ DG�(Fc, θ)n · e + o(ϕ ′) = 0. (109)

In order that this relation be satisfied as
∣

∣ϕ ′∣
∣ tends to zero, it is sufficient that

�(Fc, θ)− θDθ�(Fc, θ) = (�(ζmin I, θ)− θDθ�(ζmin I, θ))

+ 1
2ρ0s2 |DG�(Fc, θ)n|2 (110)

and

Dθ DG�(Fc, θ)n · e = 0. (111)

We note that the last relation is identical to the relation (94) that guarantees that the First Law is satisfied in
the compact phase, so that (111) places no additional restriction on Fc, θ, n, and e.

The jump condition associated with the Second Law 0 ≤ [η] = [−Dθ�], for the case when the normal to
the phase interface points into the compact phase, takes the form

0 ≤ −Dθ�(Fc, θ)− ϕ ′(0)DG Dθ�(Fc, θ)n · e + o(ϕ ′)
− (−Dθ�(ζmin I, θ))

and, in view of (94), reduces to

Dθ�(Fc, θ)+ o(ϕ ′) ≤ Dθ�(ζmin I, θ). (112)
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This jump condition is satisfied if

Dθ�(Fc, θ) 
= Dθ�(ζmin I, θ), (113)

and the inequality determined by this relation together with (112) tell us whether the transition is “compact-
to-loose” or “loose-to-compact.” The jump condition (112) also is satisfied to within terms o(ϕ ′) when

Dθ�(Fc, θ) = Dθ�(ζmin I, θ), (114)

and this relation implies that the transition is reversible, that is, that both the “compact-to-loose” transition and
the “loose-to-compact” transition can occur.

Remark 5 Sufficient conditions on Fc, n, e, and θ for the existence of a moving interface (96) that separates
the compact phase undergoing a progressive wave (90) and the loose phase undergoing the homogeneous
motion (91) are the relations (92), (94), (104) and (110). If these relations are satisfied, then (a) the phase
interface is given by (100) with speed |s| equal to the speed of the progressive wave (93) and with orientation
n and direction e those of the progressive wave, (b) the velocity in the loose phase v� is given by (99), and (c)
the deformation in the loose phase F� is given by (102). Relations (113) and (114) characterize the cases of
irreversible phase transitions and of reversible phase transitions, respectively.

11 Illustrative example

11.1 Special choice of �

We consider in this section a specific choice of the Helmholtz free energy response function �:

�(G, θ) := 1

2
α(θ)(det G)−2 + 1

2
β(θ)G · G (115)

where the elastic modulii α and β are smooth, positive-valued functions of temperature. This example appears
in various contexts in the literature ([10], Section 4.10) often without explicit dependence of the coefficients on
temperature. For each positive number θ the mapping G �−→ �(G, θ) is easily seen to satisfy the conditions of
purely dissipative disarrangements (8), isotropy (15), growth under extreme dilatations (17), and coincidence
of minimizers (21) with

ζmin := r(θ)
1
8 :=

(

α(θ)

β(θ)

) 1
8

. (116)

In fact, the formula (115) implies that for each positive number ζ the free energy satisfies

�(ζ I, θ) = α(θ)

2ζ 6 + 3β(θ)ζ 2

2
,

and this relation implies the condition of growth under extreme dilatations (17). The minimum value of

�(ζ I, θ) for ζ > 0 equals 2β(θ)r(θ)
1
4 = 2β

3
4 (θ)α(θ)

1
4 and is attained when ζ = ζmin = r(θ)

1
8 , and the

formula

DG�(G, θ) = −α(θ)(det G)−2G−T + β(θ)G (117)

implies that DG�(G, θ) = 0 if and only if G = r(θ)
1
8 Q, so that, in particular, the stress vanishes at ζmin I ,

that is, (19) holds. Moreover, because G �−→ �(G, θ) satisfies the growth conditions (23), it follows that the

minimum value of�(G, θ) for G ∈ Lin+ is attained precisely at the tensors G = r(θ)
1
8 Q, with Q ∈ Orth+; in

addition, the minimum value of �(G, θ) for G ∈ Lin+ equals 2β
3
4 (θ)α(θ)

1
4 , the minimum value of �(ζ I, θ)

for ζ > 0. Consequently, the coincidence of minimizers (21) is satisfied. Finally, the response (115) is easily
seen to be isotropic, and the particular form of its dependence on det G and G · G shows that� is polyconvex
and, hence, is rank-one convex [10,14].
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11.2 Specialization of the free energy in the case of simple shears in each phase

We now specialize the main results in Sect. 8 to the free energy (115), and, in doing so, we also impose the
following requirements on F, a, and n in (27) and (28):

F = I and a · n = 0 and b · n = 0. (118)

The first two requirements imply that Fc = ∇gc and F� = ∇g� both are of the form I +ξa⊗n, the deformation
gradient for a simple shear. The third requirement implies that the relation (69) is satisfied identically in ξc. In
fact, a routine calculation shows that

DG�(I + ξc a ⊗ n, θ) = (β(θ)− α(θ))I + ξc (α(θ)n ⊗ a + β(θ)a ⊗ n), (119)

DG�(I + ξc a ⊗ n, θ)n = (β(θ)− α(θ))n + ξc β(θ)a (120)

DG�(I + ξc a ⊗ n, θ) · (a ⊗ n) = β(θ)ξc. (121)

Consequently, the relation (69) specializes to

0 =
{

Fa

|Fa| − |Fa|
DG�(F(I+ξc a⊗n),θ)·(Fa⊗n)DG�(F(I + ξ ca ⊗ n, θ)n

}

· b

=
{

a − 1

β(θ)ξc
((β(θ)− α(θ))n + ξc β(θ)a)

}

· b

= −(β(θ)ξc)
−1 (β(θ)− α(θ))n · b,

which is satisfied by virtue of (118). Moreover, ξ0, the unique point ξc in R at which this stress component
DG�(I + ξc a ⊗ n, θ) · (a ⊗ n) vanishes, is given here by

ξ0 = 0. (122)

The Accommodation Inequality (72) now reduces to

α(θ) ≤ β(θ) (123)

or, equivalently, r(θ) ≤ 1. Because of the formulas (115) and (116), the inequality (73) in Remark 2 becomes

(α(θ)− β(θ))(α′(θ)+ 3β ′(θ)) < 0. (124)

In view of (123) and (124), the conclusions in Sect. 8.3.1 specialize here to the statement: if α(θ) < β(θ)
and α′(θ) + 3β ′(θ) > 0, then there exists δ > 0 such that for every ξc ∈ (−δ, 0) ∪ (0, δ) the body admits a
moving interface that transforms the loose phase into the compact phase with ∇gc = I + ξca ⊗ n. Similarly,
the conclusions in Sect. 8.3.2 become: if α(θ) < β(θ) and α′(θ)+ 3β ′(θ) < 0, then there exists δ > 0 such
that for every ξc ∈ (−δ, 0)∪ (0, δ) the body admits a moving interface that transforms the compact phase into
the loose phase with ∇gc = I + ξca ⊗ n.

Finally, the results on reversible transitions in Sect. 8.3.3 in the present context read: if α(θ) ≤ β(θ) and
if any one of the following three conditions holds

(1) α(θ) = β(θ) and β ′(θ) = 0

(2) α(θ) < β(θ) and α′(θ) = β ′(θ) = 0

(3) α(θ) < β(θ) and β ′(θ) 
= 0 and (α′(θ)+ 3β ′(θ))β ′(θ) > 0,

then there exists ξ̂c ∈ R\{0} such that the body admits both a moving interface that transforms the loose
phase to the compact phase and a moving interface that transforms the compact phase to the loose phase, with
∇gc = I + ξ̂ca ⊗ n. In cases (1) and (2), the shearing parameter ξ̂c can be any non-zero real number, while
in case (3) we have

ξ̂c = ±
(

1−r(θ)3/4

r(θ)3/4

(

α′(θ)
β ′(θ) + 3

))1/2
. (125)

Suppose now that the shearing parameter ξc for the compact phase lies in one of the intervals described in
the results above or corresponds to one of the numbers ξ̂c in the case of reversible transitions. The formulas
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for the speed of the phase interface�, for the relative velocity vc − v� of the two phases, for the corresponding
shear ξ� in the loose phase, and for the phase interface t̂ obtained in Sect. 8.2 then specialize to the following:

� = β(θ)|ξc|
√
ρ0

[

(α(θ)−θα′(θ))
{

1−r(θ)−
3
4

}

+(β(θ)−θβ ′(θ))
{

3+ξc
2−3r(θ)

1
4

}] 1
2
, (126)

√
ρ0(vc − v�) = ±[(α(θ)− θα′(θ))(1 − r(θ)−

3
4 )

+(β(θ)− θβ ′(θ))(3 + ξc
2 − 3r(θ)

1
4 )]1/2a, (127)

ξ� = ξc − 1
β(θ)ξc

[

(α(θ)− θα′(θ))
{

1 − r(θ)−
3
4

}

+(β(θ)− θβ ′(θ))
{

3 + ξc
2 − 3r(θ)

1
4

}]

, (128)

t̂(X) = ∓
√
ρ0

β(θ)ξc

[

(α(θ)− θα′(θ))
{

1 − r(θ)−
3
4

}

+(β(θ)− θβ ′(θ))
{

(3 + ξc
2 − 3r(θ)

1
4

}]1/2
n · (X − X0), (129)

with, as above, r(θ) = α(θ)/β(θ). (We omit the lengthy but straightforward verification of these formulas.)

11.3 Specialization of the free energy in the case of shearing waves in the compact phase

Finally, we specialize the main results in Sect. 10 to the free energy (115). In doing so, we also impose the
following requirements on Fc, e, and n in (90):

Fc = I and e · n = 0, (130)

so that the deformation gc in the compact phase assumes the form

gc(X, t) = X + ϕ((X − X0) · n + st)e + t2

2ρ0
b (131)

with gradient

∇gc(X, t) = I + ϕ ′((X − X0) · n + st)e ⊗ n,

while the deformation g� in the loose phase remains that given in the formula (91).
These specializations lead directly to the formulas

DG�(Fc, θ) = (−α(θ)+ β(θ))I,

D2
G�(Fc, θ)[e ⊗ n] = α(θ)n ⊗ e + β(θ)e ⊗ n,

and to the following simplified version of (92):

(D2
G�(Fc, θ)[e ⊗ n])n = ρ0s2e ⇐⇒

β(θ)e = ρ0s2e ⇐⇒
s2 = β(θ)

ρ0
, (132)

so that the progressive wave in the compact phase is a shear wave with speed
√
β(θ)/ρ0.

The requirement (94) arising from the imposition of the First Law in the compact phase here becomes

0 = Dθ DG�(Fc, θ)n · e = (−α′(θ)+ β ′(θ))I n · e

= (β ′(θ)− α′(θ))n · e,

and this relation is verified in view of the assumption (130). The remaining requirement (110) obtained in
Sect. 10.2 specializes to the relation

(r(θ)3/4 − 1)(α(θ)+ 3β(θ)− θ(α′(θ)+ 3β ′(θ))) = r(θ)3/4
(α(θ)− β(θ))2

β(θ)
, (133)

Author's personal copy



L. Deseri, D. R. Owen

with r(θ) := α(θ)/β(θ), and amounts to a restriction on the temperature θ .
The Accommodation Inequality (95) in the loose phase now reads

ζ 3
min ≤ det Fc(1 − 1

ρ0s2 DG�(Fc, θ)n · F−T
c n) ⇐⇒

(

α(θ)

β(θ)

)3/8

= ζ 3
min ≤ 1 − 1

β(θ)
(−α(θ)+ β(θ)) = α(θ)

β(θ)
⇐⇒

β(θ) ≤ α(θ). (134)

We note that this version of the Accommodation Inequality, when the loose phase is adjacent to a shear wave
in the compact phase, is opposite to the version of the Accommodation Inequality (123) when the loose phase
is adjacent to a (static) simple shear in the compact phase.

In summary, for an elastic aggregate with the free energy (115), the relations (130), (133), and (134) are
sufficient in order that a moving interface separate the loose wave undergoing the motion (91) and the compact
wave undergoing the motion (131). In particular, if the temperature θ is such that α(θ) = β(θ), then these
sufficient conditions all are satisfied.

The formula (102) for the deformation gradient F� in the loose phase, when adjacent to a shear wave in
the compact phase, specializes here to

F� = Fc − 1
ρ0s2 DG�(Fc, θ)n ⊗ n

= I − 1

β(θ)
(−α(θ)+ β(θ))I n ⊗ n

= I + α(θ)− β(θ)

β(θ)
n ⊗ n, (135)

which represents an extension in the direction n. In contrast, we note from Sect. 11.2 that the deformation
gradient F� = I + ξ�a ⊗ n in the loose phase, when adjacent to a (static) simple shear in the compact phase,
is a simple shear. The formula (101) for the velocity v� in the loose phase (when the body force vanishes)
specializes here to the relation

v�

s
= α(θ)− β(θ)

β(θ)
n. (136)
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