Strain propagation in Nano-crystalline ceramics

The laser pump-probe technique

Morgan Jones

mgj7@aber.ac.uk
Phone: 01970 62(8503)
Topics covered

• Powder X-ray Diffraction (PXRD)
• Types of Strain
• The Experiment
• Reitveld Refinement
 – Topas
• Results, so far...
What’s it all about?

• Short intense influx of energy
 – High peak intensity
 – low integrated intensity

• Cause a shockwave
 – Wavefront of high strain
 • Propagates through grains
 • High propagation velocity
 • High peak strain intensity
X-ray Diffraction

- **Bragg Geometry**
 - \(n\lambda = 2d\sin(\theta) \)

- **Not just the D-spacing**
 - Sample contribution
 - Instrumental contribution
 - Source contribution

\[Y(2\theta) = (Source \otimes Instrument) \otimes Sample \]
1. Peak positions determined by size and shape of unit cell – internal structure

2. Peak Intensities determined by where atoms sit in the unit cell – internal structure
Sample Contribution, continued...

3. Peak widths determined by size and strain in crystallites – microstructure.

4. Background oscillations may contain information about short range order in the material.
Types of Strain

- Intrinsic Strain
 - Current state
- Residual Strain
 - Modify Intrinsic Strain
- Dynamic Strain
 - Time resolved
Strain...

- **Macrostrain**
 - Strain same over whole material
 - Peak shifts are a uniform
 - Magnitude is a $f(2\theta)$
 - Same direction

- **Microstrain**
 - Strain localised to a small region of sample
 - tens of unit cells
 - Peak broadening not uniform
 - Different magnitudes
 - Not as a $f(2\theta)$
Strain continued

Unstrained

Macrostrain
 • Peak shift

Microstrain
 • Peak broadening
Dynamic Strain

- **Energy Propagation**
 - Thermal effect - radial
 - Thermo-kinetic effect – planes
 - Grain boundary?
 - Very quick
 - $V \approx 3.7 \times 10^6 \text{ m/s}$

- **Why Nano-crystalline?**
 - Grain boundary
 - Slower propagation
The Experiment

- Diamond Synchrotron Source
- Mythen 90° PSD Detector
- Sample
- X-ray Beam
- Diffracted X-ray Beam
- Laser Mirror
- CO₂ Laser Source
- Precision Sample Stage
How does it work?

Detector...

Laser...

Acquisition time - 1ms

Trigger delay - 10μs

Repetition rate 2s
How does it work?

Detector...

Laser...

Acquisition time - 1ms

Trigger delay - 10μs

Repetition rate 2s

500μs 500μs
Data Quality

Comparison of a single 1ms exposure with a summation of 1242 exposures

Counts

2theta (deg)

1242 1ms exposures added up
single 1s exposure
Data Analysis

- Rietveld Refinement
 - Least Squares fitting
 - Instrumental
 - Source
 - Sample
 - Structural refinement
- Pawley le Bail
 - Least Squares fitting
 - Not structural
 - Not intensity dependent
The Sample

• Blend
 • 60% Alumina
 • 40% Zirconia
 • Potassium Binder

• Results...
 • Two phase refractory
 » Alumina Zirconia (tetragonal)
 » Zirconia (monoclinic)
 • Potassium (minor phase)
Results

Strain vs Displacement

Macroscopic Strain vs Displacement from shock site (mm)

- a (Al60Zr40)
- c (Al60Zr40)
- beta (Zirconia)
- a (Zirconia)
- b (Zirconia)
- c (Zirconia)
Results

Strain vs Displacement

Macroscopic Strain

Displacement from shock site (mm)
Results

Strain vs Displacement

- Macroscopic Strain
- Displacement from shock site (mm)

- a (Al60Zr40)
- c (Al60Zr40)
- beta (Zirconia)
- a (Zirconia)
- b (Zirconia)
- c (Zirconia)
Results

Strain vs Displacement

- Macroscopic Strain vs Displacement from shock site (mm)

- Different materials represented with different markers:
 - Diamond (Al60Zr40)
 - Beta (Zirconia)
 - Alpha (Zirconia)

- Data points indicate strain values at various displacement points.
Conclusion so far...

• Results
 • Strain clearly visible
 • $Strain \propto \frac{1}{r}$
 » $r = \text{distance from shock site}$
 • Not due to thermal expansion
 » Coeff. Thermal Expansion $10^{-6}/^\circ\text{C}$
 » Strain too large to be thermal expansion

– Frame Analysis...
 • No residual thermal expansion
Next Step

• Rolling Average
 – Small frames ~250ms
 – Refine strain on small frames
 • More noisy
 • More strain in each frame
Thanks for Listening

This work was funded by EU FP7, grant PIAP-GA-2011-286110-Intercer2