


Nonlinear Physical
Systems

Spectral Analysis, Stability and Bifurcations

Edited by
Oleg N. Kirillov
Dmitry E. Pelinovsky

Series Editor
Noél Challamel

e WILEY




First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Lid John Wiley & Sons, Inc.
27-37 St George's Road 111 River Street
London SW19 4EU Hoboken, NJ 07030

UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2014

The rights of Oleg N. Kirillov and Dimtry E. Pelinovsky to be identified as the author of this work have
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988,

Library of Congress Control Number: 2013950133

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN: 978-1-84821-420-0

MiIX

Paper from
FSC rasponsible sources

wewicoy  FSC® C013604

Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CRO4YY



Table of Contents

Preface . s sinii o sami 0 S el 4 5aes £ Vetd 5 PSS 5 Besd 4 nas Xiii

Chapter 1. Surprising Instabilities of Simple Elastic Structures . . . . . . . 1
Davide BIGONI, Diego MISSERONI, Giovanni NOSELLI and Daniele ZACCARIA

I.1. Introduction . . . . .. .. .. .. . i e 1
12 BUekBnganension. o « «een o o svwse 5 0 wesos 5 o aas m 8 ewis @ 8 o 2
1.3. The effect of constraint’s curvature . . . . ... .............. 4
1.4. The Ziegler pendulum made unstable by Coulomb friction. . . . . . . . 8
LD, CONGIORIONS = o ol 5w aomte w 5 vmwis ® 5 OuelE & S K % SSDE & 8 9 12
1.6. Acknowledgments . . ¢ .cv v v viit w s e e v e dae b w e b v aTe 13
L7, Bibliography 'z  vsvi s s sen s s vms s 5 dwn ¥ 8 Seh 4 8 en 8 5 8% 13

Chapter 2. WKB Solutions Near an Unstable Equilibrium
and APPHCALIONS -« v v 2 v givre % 5 o w8 ek v 8 e B Y BUER 3 W 5 15

Jean-Francois BONY, Setsuro FUJIIE, Thierry RAMOND and Maher ZERZERI

2L ITOdUBEIGIE & o smpe 0 = svomme wm s B o oveme © & S @ 9 saERbe & b 15
2.2. Connection of microlocal solutions near a hyperbolic fixed point . . . . 18
2.2.1, Amodel inonedimnension . i v v e v v s e B vk s s v e 19
2.2.2. Classical mechanics . . ... ...................... 21
2.2.3. Review of semi-classical microlocal analysis . . . ... ....... 23
2.2.4. The microlocal Cauchy problem — uniqueness . . .. ........ 24
2.2.5. The microlocal Cauchy problem — transition operator . . . . . . .. 26
2.3. Applications to semi-classical resonances . . ... ............ 28
2.3.1. Spectral projection and Schrodinger group . . .. . ... ... ... 30
2.3.2. Resonance-free zone for homoclinic trajectories . . . .. ...... 33
24, ACKNOWIEHEMENT ocon = wvvnre & wuwm ¥ GETUR B REAE B OWER ¢ 5 37

25; Biblography & s ou s 5 v 50 5 V955 5 5508 5 e E 5 RaRE § 8 37



vi  Nonlinear Physical Systems

Chapter 3. The Sign Exchange Bifurcation in a Family of
Linear Hamiltonian Systems . . . . . .. ..................... 41

Richard CUSHMAN, Johnathan M. ROBBINS and Dimitrii SADOVSKII

3.1, Statement 6f probIemM . o ccov w s v 5 & evew & v v & ¢ GRS 8 e 41
3:2. Bifurcation Values of ¥ ¢ ;oo 5 v i%i s 0 viol & v %0 5 v Sleie B v o 45
3.3. Versal normal forms near the bifurcation values . . . ... ... ... .. 46
3.3.1. Normal fOrms .« & o wivs o v s o v seme s & e & ¥ i0wis 4 @ oa 46
3.3.2. Linear Hamiltonian Hopf bifurcation y . . . . . .. ... ...... 47
3.3.3. The Switch twist bifurcationat y™ . . . . ... ... ......... 50
3.3.4. Signexchangebifurcation . . ... .o ovi v i iy iee e . 53
3.4. Infinitesimally symplectic normal form . . . . . ... ... ........ 57
3:4.1. Nomal formof Dy @ty & .« e 5« sinve 5 savers 5 & ams « & oo 57
34 2. Normal form of Xy athhi: » o s 5 5 095 & vaisis & sdiw 7 5 0% 60
3.5. Globalissues . . .. ... ... ... . ... .. 62
3:3:1. Iovariant TASTAnBE PIANES .« & v w v s = wames & wansey % & e 62
3.5.2. Symplectic 8Ig0% ¢ wov & 5 vios 3 & wE & R ¥ FaeE § b 64
3.6. Bibliography . . . . ... ... ... ... 65

Chapter 4. Dissipation Effect on Local and Global
Fluid-Elastic Instabilities . . . . . ... ... ... ... ............. 67
Olivier DOARE

4.1. Introduction . . . . .. ... 67
4.2. Local and global stability analyses . .. .................. 68
42.1. Localanalysis . ... ...... ... ... . ... . ..., 69
422 Globalanalysis . . . ... ... ... ... ... ... 69
4.3. The fluid-conveying pipe: a model problem . ... ... ......... 70
4.4, Effect of damping on the local and global stability of the
fluid-conveying pipe . . . . . ... ... 72
441, Local Stability « « o wos o e @ wesnn @ s w sma 8§ o 72
4.4.2. Global stability : & « cx: ¢ swian 5 slom 5 % wwii 5 8 3E 5 b s 74
4.5. Application to energy harvesting . . . . ... ... ... ......... 79
4.6, CONCLUBION . v o viams & v & srasw & snrl s & el B 6 w90 & 8 S 81
4.7. Bibliography . . . . ... ... 82

Chapter 5. Tunneling, Librations and Normal Forms in a
Quantum Double Well with a MagneticField . . . . ... ........... 85
Sergey Y. DOBROKHOTOV and Anatoly Y. ANIKIN

5.1 INOAUBHON & 5 iiv 5 ot 4 & 5005 5 = sme o = e 1 o mee b e 85

5.2. 1D Landau-Lifshitz splitting formula and its analog for the
FIOUNASIAES) o oo v v © wimss v & Fdos & % GO B & B & & BEH 87



Table of Contents  vii

5.3. The splitting formula in multi-dimensional case . . . . . . ... ... .. 92
5.4. Normal forms and complex Lagrangian manifolds . . ... ... .. .. 98
5.4.1. Normal form in the classically allowed and forbidden regions ... 98
5.4.2. Complex continuation of integrals . . .. ............... 99
5.4.3. Almost invariant complex Lagrangian manifolds . . . . .. ... .. 99
5.5. Constructing the asymptotics for the eigenfunctions in
tunnelproblems . . . . . ... ... ... ... ... 100
9:3:1. Complex WIKBHBHHON v 5 wvmws o sunms & v own 5 @ s @ % & 100
5.5.2. WKB-methods with real and pure imaginary phases . . . ... ... 101
5.5.3. Variational methods . . . . ... .................... 102
5.6. Splitting of the eigenvalues in the presence of magnetic field . . ... . 103
5.7. Proof of main theorem (asketch) . . .................... 104
5.7.1. Lifshitz—Herring formula . . . ... ... ............... 105
5.7.2. Instanton splitting formula . . . .. .................. 105
5.7.3. Asymptotic behavior of the libration action . . . . . ... ...... 106
5.7.4. Reduction to the 1D splitting problem . . . . . ... ... ... ... 106
5.7.5. Asymptotic behavior of the Floquet exponents . . . ... ...... 107
5.7.6. Finishing theproof . . . . . .. ... ... ... ............ 107
581 CONCNISION srwe v sowmine 5 o wimes » winwaie o ks B & G @ 5 GBS W & 107
519 ACKNOWIEHEMENtS wovu v o wen & veoww w oo ¥ % BRI B L R F WS 108
5.10. Bibliography . . . .. ... ... ... 108

Chapter 6. Stability of Dipole Gap Solitons in Two-Dimensional
Lattice Potentials . . . . .. ... ... ... . ...... .. .. ........ 111
Nir DROR and Boris A. MALOMED

61 INtOdUCHON oo o wavss w5 e & CES & NSRBI S B BEG A 8 111
6:2: Themodel vvo: v v v v 0% 5 sinm & s 5 ook i 5 0855 53 113
6.3. Solitons in the first bandgap: the SF nonlinearity . . ........... 115
6.3.1. Solution families: ... . - sow 5 sosas o vmms & s @ e @ 115
6.3.2. Stability of solitons in the first finite bandgap . . . . ... ... ... 117
6.3.3. Bound states of solitons in the firstbandgap . .. .......... 124
6.4. Stability GSsinthesecondbandgap . ... ................ 125
6.5: Conclusions «:: » ¢ o ¢ ¢ swm 5 v Ty B BEAE B WERE B e B 8 134
0:6; BIDLOZrAPAY. .+« 3 5 sieis 5 o sisls & 5 whmen = sasesis @ snsssss 5 sienecs 5 s 135

Chapter 7. Representation of Wave Energy of a Rotating Flow in
Terms of the Dispersion Relation . . . ... ................... 139

Yasuhide FUKUMOTO, Makoto HIROTA and Youichi MIE

Tl IEOAUERON v o w svais & w smes & & W0ars B S0S00ms B SRR o WSl & b 139
7.2. Lagrangian approach to waveenergy . ... ................ 142
7.3. Kelvin waves



viii  Nonlinear Physical Systems

7.4. Wave energy in terms of the dispersion relation . . . . .. ... ... ..
1D COMCIUSION w1 5 srasan v s 5 o ases & o olens ® o mwm = wEEE @ W W
:6: BIDHOBraphY« & wans 5 5@ % & 0o 6 & 5ol § foel § o 8 8 ds

Chapter 8. Determining the Stability Domain of Perturbed
Four-Dimensional Systems in 1:1 Resonance . . ... ... ..........
Igor HOVENIIN and Oleg N. KIRILLOV

8.1, INGOUUCHON :: = & svavs 5 camu & wem B el B R SR & & ORE B GBS
8.1.1. Physical motivation . ... ............ ... ...,
Ol SBINE o0 o swons 1 v v ® s o e 8 R @ o G W ® e
8.1.3. Main question and examples . . . ... ................

82. Methods . . . .. ... e e e e
83:2.1. Centtalizer anfolding ..o o v s 5 v & e ¢ s s v e
8.2.2. Stabilitydomain : = s oo & 5 ien 5 vaen e HEEE 5 SERE § b
8.2.3. Mapping into the centralizer unfolding . .. ... ... ... ....

8.3, Examples. . . . . .o
8.3.1. Modulationinstability . . . .......................
8.3.2. Non-conservative gyroscopic system. . . . . . ... .........

B4, CONCIUSIONS v w wwmis m sommos & suens » @ IO « 5 soees B & 526 ¥ X 7

8.5, BIbHOGIAPNY v & v enits 5 wrassin & Piosi § & o08% 5 v 0 B G ORE b G 3

Chapter 9. Index Theorems for Polynomial Pencils . . . . . ... ... ...
Richard KOLLAR and Radomir BOSAK

9:1; Introducion: -:: % &« s 5 & Dt b W ¥ SRS ¥ G B b DA s B
9.2, Krein signature . . . . . . . . . ...t
9.3. Index theorems for linear pencils and linearized Hamiltonians . . . . . .
9.4. Graphical interpretation of index theorems . . . . . ... ... ... ...

9.4.1. Algebraic calculationof Z*and Z" . . .. ... ... .. ... ....
D:5 HEONCIUBIONS) coeis i semns = woms # & musns @ 5 Gens © Siesem w EROE ® 8
9.6. Acknowledgmients .i.cs s v s v eEs g s Ea s e e Vs B G
0.7, BIDLHOBTAPDY 1w v » sowr v o siosn w0 sowms s % wuoms & w wosn o s nimpe o s

Chapter 10. Investigating Stability and Finding New Solutions in
Conservative Fluid Flows Through Bifurcation Approaches . . . . . . . ..
Paolo LuzzATTO-FEGIZ and Charles H.K. WILLIAMSON

101 Introduction o 2 5 a5 5 desG s el S SRt R o Sen B 5 Sl B 8
10.2. Counting positive-energy modes from IVI diagrams . . . . ... .. ..
10.3. An approximate prediction for the onset of resonance in 2D vortices . .
10.4. An example: three corotating vortices . . . . .. ... ..........



Table of Contents

10.4.1. Building a family of solutions from
vorticity-preserving rearrangements . . . . . . ... ... .. ...
10.4.2. Computing signatures for one member of the family . ... .. ..
10.4.3. The velocity-impulse diagram . . . . ... ... ... ........
10.4.4. Uncovering bifurcations by introducing imperfections . . . . . ..
10.4.5. Counting positive-energy modes from turning points in impulse . .
10.4.6. Recovering the underlying bifurcation structure . . . .. ... ...
10.4.7. An approximate prediction for resonance . . . . .. ... ......
10.5. Comparison with exact eigenvalues and discussion . . . . ... ... ..
106 CoRClOSIONS = & wvwwn 8 wwam ¥ GRS & WM 5 ¥ SR 9 B EEE B K 3
107 Biblography « ¢ sous s o S oo R SO S F URS H 5 SN 5 53

Chapter 11. Evolution Equations for Finite Amplitude Waves in
Parallel Shear Flows . . . .. ... ... ... ... ... ... .......
Sherwin A. MASLOWE

111 INFOdUCHON «x & w smems @ 5 momos & 9 wams B 8 owE ¥ TR B BedEUE S
112 Wave DACKRES. «. & & cori w % wvsi & @ ioate & ¥ a0 % 0Nl w vanea v
11.2.1. Conservative SyStems . . . . . . v v v v v v vt v e e e e
11.2.2. Applications to hydrodynamic stability . . . . ... ... ......
11.2.3. The Ginzburg-Landau equation . . . .. ...............
11.3. Critical 1ayertheory o u 5 5wl 5 5 i v ¥ oh & 5 09 & 5 8a% & &
11.3.1. Asymptotic theory of the Orr—Sommerfeld equation . . ... ...
11.3.2. Nonlineat critical JaYers: «ovo » suem o w0 s © v swis o = sisis @ s
11.3.3. The wave packet critical layer: « s woim @ v 5 v smn o w s &
11.4. Nonlinear instabilities governed by integro-differential equations
11.4.1. The zonal wave packet critical layer . . . . . ... ... .......
11.5. Concluding remarks . . . . .. . .. ...
Y16 BIDMOBIADHY ooe o w0 v o » s & 5 spane w e asmo o pavess = wossss o
Chapter 12. Continuum Hamiltonian Hopf BifurcationI . . . . . . . . . ..
Philip J. MORRISON and George I. HAGSTROM

12. 1. Introduction . . . . . . . o e e e e e
12.2. Discrete Hamiltonian bifurcations . . .. ... ..............
12.2.1. A class of 1 + 1 Hamiltonian multifluid theories . . . . . ... ...
1222 Examples .-, & vases & bsten @ vaa & 8 SRS W ¥ en B 8 T 6
12.2.3. Comparison and commentary . . ... ................
12.3. Continuum Hamiltonian bifurcations . . . . . .. .. ... .. ......
12.3.1. A class of 2 + 1 Hamiltonian mean field theories . ... ... ...
12.3.2. Example of the CHH bifurcation. . & ¢ o s o ou s 6 walo s
12.4. Summary and conclusions . . . . ... ... .. ... L.
12.5. Acknowledgments . . oo v v pars v wowien & wares v B 8 Feve
12.6.Bibliography o v ¢ sen & & s § 0TS & BAiE ¢ ERE ¥ wami

ix

223

223
226
226
228
231
232
233
234
237
241
241
244
244



x  Nonlinear Physical Systems

Chapter 13. Continuum Hamiltonian Hopf BifurcationII . . . ... .. .. 283
George I. HAGSTROM and Philip J. MORRISON
131 Introduetion - .. ... « s o s o 5 o 5 8 et 5 5 RSE © 5 oo 284
13.2. Mathematical aspects of the continuum Hamiltonian
HOPEDIULCAON. & & coone o s 0w svors & fwis & & sows @ & s 8 285
13. 2.1 Strictural SEbIEY = ou » won s @ smrt 5 0 s % o 2 0 ¥ SN w 285
13.2.2. Normal forms and signature . . . ... ... ............. 287
13.3. Application to Vlasov-Poisson . . . . ... ... ... 288
13.3.1. Structural stability in the space C"(R)NL'(R) . . . ... ...... 292
13.3.2. Structural stability in Wh' . ... 294
13.3.3. Dynamical accessibility and structural stability . .. ... ... .. 296
13.4. Canonical infinite-dimensionalcase . . ... ............... 300
13.4.1. Negative energy oscillator coupled to aheatbath ... ... . ... 301
13.5. Commentary: degeneracy and nonlinearity . . .............. 303
13.6. Summary andconelusions . . . . ... ...l 308
13.7. Acknowledgments . . . . ... ... ... ... 308
13:8. BibLOSEADHY  «ivois o sners o w0 susms 0 % s ® 3 s & 5 s ® 8 sue 308

Chapter 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic
Plasma-Model o o vooovs v s v sami v omm 8 o o b owm 6 % eees 311
Philip J. MORRISON, Emanuele TASSI and Cesare TRONCI

1AL TOtOAUEHON . » oo morws & sosress & SHo @ 8 SooN0T O SHeT @ B FHEES 311
14.2. Stability and the energy-Casimirmethod . . .. ... .......... 312
14.3. Planar Hamiltonian hybridmodel . . . . . . ... ... ... .. ..... 314
14.3.1. Planar hybrid model equations of motion . . . . . .. ... ... .. 314
1432 Hamiltonian Stuchie s & » wam » wams  sws @ wenrs @ 2o 316
1433 Casimr Invariants z 55 5 s s 5 5550 8 5o & 0ARE B § g8 317
14.4. Energy-Casimir stability analysis . . . . . ... .............. 318
14.4.1. Equilibrium variational principle . . .. ... ... ......... 319
14.4.2. Stabilityconditions . .............. ..ot 320
A CONCIOSIONS . = weoncy o som & @ ooms © 55 FHeme B 5 BTeEs B S o 5 s 323
14.6.-Acknowledgments . ¢ :uaci o o sera & 6 s @ v e § @ et W e 324
14.7. Appendix A: derivation of hybrid Hamiltonian structure . . . . . . . .. 324
14.8. Appendix B: Casimir verification . . . . ... ... ............ 326
14.9:Biblography = «oww & wamas @ e 5 ¢ s 8 5 265 © ¢ Wem 2 ¥ N 327

Chapter 15. Accurate Estimates for the Exponential Decay of Semigroups
with Non-Self-Adjoint Generators . . . . ... ................. 331
Francis NIER

1501 IntrodiGHon 5 & cavs v & wves & eres & BEE R F TR 6 B WRG R # e 331
15.2. Relevant quantities for sectorial operators . . . . . ... ......... 334



Table of Contents

15:3: Natral examiples: s o 2 o soii 6 5 0 8 5 B85 4 5 06% & ¥ 54% 4 §
15.3.1. An example related to linearized equations of fluid mechanics . . .
15.3.2. Kramers-Fokker—Planck operators . . . ... ... ... ......

15.4. Artificial examples
15.4.1. Adiabatic evolution of quantum resonances in the

CHEAITENSIONALCARE o s » = smen % & pows & o vooie w0 § Sodh o

15.4.2. Optimizing the sampling of equilibrium distributions . . . . . . . .
15.5.Conclusion . . ... .. ...
19:6.BIbHOEEAPHY 5 & comm e o sovs o % sesm & @ ows o 5 060 & 5 sHENS @

Chapter 16. Stability Optimization for Polynomials and Matrices . . . . .
Michael L. OVERTON

16.1. Optimization of roots of polynomials . . ... ..............
16.1.1. Root optimization over a polynomial family with a single
affine constraint . . . . ... ...
16.1.2. Therootradius . . . . . ... .. ...
16.1.4. Bxamples:. © . v o v v tiies o st s miee e s s e s s
16.1.5. Polynomial root optimization with several affine constraints . . . .
16.1.6. Variational analysis of the root radius and abscissa . . ... .. ..
16.1.7. Computing the root radius and abscissa . . . . .. ... .. ... ..
16.2. Optimization of eigenvalues of matrices . . . . . ... ..........
16.2.1. Static output feedback . . . . .... ... ... .. ... ...
16.2.2. Numerical methods for non-smooth optimization . .. ... .. ..
16.2.3. Numerical results for some SOF problems . . . . ..........
16.2.4. The Diaconis-Holmes—Neal Markov chain . . . . ... .......
16.2.5. Active derogatory eigenvalues . . . .. ... .............
16:3. Concluding temarks: :oos 5 o e & o e 5 v s 5 W e W 3 e
16.4. Acknowledgments . . . .. ... .. ... ... ... e
165, BiBHOBEDRY vox 5 5 somin 0 @ amown 5 5 conss % o wisis 1 8 wymms & o oy %

Chapter 17. Spectral Stability of Nonlinear Waves in KdV-Type
Evolution Equations ... ¢ & s o & sl 5 & wiem 4 8 8%0% 5 & o0 5 6 s &

Dmitry E. PELINOVSKY

17.1. INEOAUEHON s & ¢ vuane % & eiem & @ waie & % s ¥ & SN % & S %
17.2. Historical remarks and examples . . . . ... .. .............
17.3. Proof of theorem 17.1 . . . .. ... ... .. . ... .. ...
17.4. Generalization of theorem 17.1 for a periodic nonlinear wave . . . . . .
175: Conelusion s 2 vef 8 5 UR A 5 H08 0 5 205 0 ¥ as & 5 Gul b

1716 BIDHOPEADEY: .oomor o suimatios 5 snss & 0 5ol & 9 ©0ng % 8 e e b w50 &

Xi



xii  Nonlinear Physical Systems

Chapter 18. Unfreezing Casimir Invariants: Singular Perturbations
Giving Rise to Forbidden Instabilities . . ... .................
Zensho YOSHIDA and Philip J. MORRISON

18.1. Introduction, ; oot % 5 e & 5% 5 feni § P 5 Bel B pani
18.2. Preliminaries: noncanonical Hamiltonian systems and
CasiririnVariants’ « . cos & w s w5 oo @ s 8 s © 5o
18.3. Foliation by adiabatic invariants . . . . . ... ... ...........
18.4. Canonization atop Casimir leaves . . ... ... ... ... .......
18.4.1. Extension of the phase space and canonization. . . . ... ... ..
18.4.2. “Minimum” canonization invoking Casimir invariants . . . . . ..
18.5. Application to tearing-mode theory . . .. .. ... ... ... .....
18.5.1. Helicity and Beltrami equilibria . . . . .. ... ... ........
18.5.2. Tearing-mode instability . . ......................
18.6. Conclusion . . . . . . . . . . i e e
18.7. Acknowledgments
18.8. Bibliography

Listof Authors . . . . . . . . . . .. . .. . . . e



Preface

The BIRS Workshop on Spectral Analysis, Stability and Bifurcations in Modern
Nonlinear Physical Systems! brought together a unique combination of experts in
modern dynamical systems, mathematical physics, partial differential equations
(PDEs), numerical analysis, operator theory and applications.

One of the immediate outcomes of the meeting is this post-conference volume
of papers from the participants of the workshops making its materials available to
a wider audience. This book presents unique viewpoints of the participants on the
history, current state of the art and prospects of research in their fields contributing
to the progress of stability theory. In this book, we have compiled a collection of
essays — mathematical, physical and mechanical. The contributions show connections
between different approaches, applications and ideas. We believe that such a book
could set the benchmarks and goals for the next generation of researchers and be a
true event in modern stability theory. The other outcomes will be seen over a long
period of time, when the ideas formulated and discussed during the workshop, as well
as new collaborations made, will lead to new scientific publications and new research
discoveries.

This book covers the problems of spectral analysis, stability and bifurcations
arising from the nonlinear PDEs of modern physics. Bifurcations and stability of
solitary waves, stability analysis in hydro- and magnetohydrodynamics and
dissipation-induced instabilities will be treated with the use of the theory of Krein
and Pontryagin space, index theory, the theory of multiparameter eigenvalue
problems and modern asymptotic and perturbative approaches. All chapters contain
mechanical and physical examples and combine both tutorial and advanced sections,

|1 Took place at the Banff International Research Station for Mathematical Innovation
and Discovery, Banff, Canada on 4-9 November 2012. For more information see
http://www.birs.ca/events/2012/5-day-workshops/12w5073.
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making them attractive both to professionals working in the field and non-specialists
interested in knowing more about modern methods and trends in stability theory.

Chapter 1, written by Davide Bigoni and his colleagues, opens the book and
presents the reader with sophisticated experiments with simple mechanical structures
demonstrating buckling under tensile dead loading (without elements subject to
compression at all) and flutter or oscillatory instability of a two-link pendulum that is
caused by Coulomb friction. This new look at the classical mechanics is directly
motivated by the successes of modern materials science.

The semi-classical n-dimensional quantum tunneling effect, through a hyperbolic
fixed point, is treated by Jean-Frangois Bony et al. in Chapter 2. The transfer operator
which solves this microlocal Cauchy problem appears to be a Fourier integral
operator which gives outgoing waves in terms of incoming waves. As an application,
the longtime behavior of the Schridinger group at barrier top is described in term of
resonances with explicit generalized spectral projections. Another application is to
obtain resonances free regions for homoclinic trapped sets.

A semi-classical limit of a quantum problem on angular momenta interacting in a
magnetic field has led Richard Cushman and his colleagues to a curious one-parameter
family of Hamiltonian systems in Chapter 3. Their system exhibits an S'-equivariant
sign exchange bifurcation in its linearization about an equilibrium point. The stability
of this bifurcation under small S'-invariant perturbations by linear Hamiltonian vector
fields is shown in an instructive manner involving the method of versal deformations.

In Chapter 4, Olivier Doaré discusses the counter-intuitive destabilizing effect of
damping in the problems of fluid—structure interaction. A model problem considered is
a fluid—conveying pipe where the viscous damping is shown to destabilize the negative
energy waves. The fluid-conveying pipe is a model problem for many fluid-elastic
systems where a compliant structure interacts with a flow, such as flags, plates, shells,
walls or wings. The model is of particular interest in the modern energy-harvesting
applications.

Sergey Dobrokhotov and Anatoly Anikin discuss in Chapter 5 the splitting of the
lowest eigenvalues of the multidimensional Schrodinger operator with the
double-well potential. As a rule, the splitting formula is based on the instanton, which
is a singular trajectory of the Newtonian system with inverted potential. However, a
physically relevant form of the formula should involve, as the authors demonstrate,
not the instanton but an appropriate unstable periodic trajectory (libration).

Periodic potentials and solitons are the subject of Chapter 6, written by Nir Dror
and Boris Malomed. To stabilize the solitons in a two-dimensional Bose-Einstein
condensate, a linear periodic potential is induced by means of the optical lattices,
which are the interference patterns created by laser beams shone through the
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condensate. Such periodic potentials give rise to bandgaps in the corresponding
linear spectrum, which, in combination with the self-focusing or self-defocusing
nonlinearity, support various types of localized mode. The authors demonstrate that
bound complexes built of the dipole solitons, in the form of bi-dipoles and
four-dipole non-topological states, vortices and quadrupoles, are all stable if the
underlying dipole is stable.

A steady Euler flow of an inviscid incompressible fluid is characterized as an
extremum of the total kinetic energy with respect to perturbations constrained to an
isovortical sheet. Yasuhide Fukumoto et al. analyze in Chapter 7 the criticality in the
Hamiltonian to calculate the energy of three-dimensional waves on a steady vortical
flow and to calculate the mean flow induced by nonlinear interaction of waves with
themselves. The energy of waves on a rotating flow is expressible in terms of a
derivative of the dispersion relation with respect to the frequency.

Pure imaginary eigenvalues in 1:1 semi-simple resonance (diabolical points in the
physics language) typically occur in rotationally symmetrical non-dissipative models
of physics and engineering. Its unfolding caused by symmetry-breaking and
non-conservative perturbation is a reason for many instabilities such as the rotating
polygon instability of swirling free surface flow. In Chapter 8, Igor Hoveijn and Oleg
Kirillov map all possible singularities on the boundary of the stability domain of
perturbed four-dimensional systems in 1:1 resonance and apply the result to the study
of the enhancement of the modulation instability with dissipation.

Since the time of the celebrated Kelvin—-Tait—Chetaev theorem, counts of unstable
point spectra and other related counts that are referred to as index theorems have
appeared across various distinct and unrelated fields due to their simple structure and
importance for stability applications. Richard Kolldr and Radomir Bosdk give in
Chapter 9 a unique and comprehensive survey of the index theorems motivated by
very different physical, algebraic and control theory applications and also present a
graphical Krein signature theory. The latter makes the proofs of index theorems for
linearized Hamiltonians extremely elegant in the finite dimensional setting: a general
result implying Vakhitov—Kolokolov criterion (or Grillakis—Shatah—Strauss criterion)
as a corollary generalized to problems with arbitrary kernels, and a count of real
eigenvalues for linearized Hamiltonian systems in canonical form.

Chapter 10 provides an example of counting unstable eigenvalues in the problems
of vortex dynamics presented by Paolo Luzzatto-Fegiz and Charles H.K. Williamson.
They demonstrate that the turning points in impulse of the vortex array correspond to
a change in the number of unstable modes. Furthermore, whether the isovortical
rearrangements involve the introduction or removal of an unstable mode can be
inferred from the shape of a fold in the phase velocity—impulse plot.



xvi  Nonlinear Physical Systems

In Chapter 11, the fluid dynamical theme is continued by Sherwin Maslowe who
provides a general and comprehensive survey of the finite amplitude theory and
discusses in detail the critical layer analyses that indicate, in particular, important
resolution requirements for computational schemes.

A main motivation for studying Hamiltonian systems is their universality. In
Chapter 12, Philip Morrison and George Hagstrom show how infinite-dimensional
noncanonical Hamiltonian systems enlarge this universality class. Any specific
system within the classes of systems considered may possess steady-state
bifurcations, positive and negative energy modes and Krein’s theorem for the
Hamiltonian Hopf bifurcations. An analogous situation transpires for the continuous
steady-state and Hamiltonian Hopf bifurcations. However, continuous spectra are
difficult to deal with mathematically and functional analysis is essential. For
example, we can interpret the continuous Hamiltonian Hopf bifurcation as the
Hamiltonian Hopf bifurcation with the second mode coming from the continuous
spectrum. Chapter 12 sets the stage for the explicit treatment of bifurcations with the
continuous spectrum that is considered in Chapter 13.

A hybrid fluid-kinetic model of plasma physics considered by Philip Morrison and
his coauthors in Chapter 14 combines a magnetohydrodynamics (MHD) part for a
description of bulk fluid components and a Vlasov kinetic theory part that describes
an energetic plasma component. In the considered model, a Hamiltonian structure is
found that allows the authors to implement the energy-Casimir method for an explicit
derivation of sufficient stability conditions.

Semigroups (or dynamical systems) of contractions in Hilbert space with
non-self-adjoint generators considered by Francis Nier in Chapter 15 are motivated
by the linearization of incompressible 2D-Navier-Stokes equation in the vortex
formulation around Oseen vortices and by the Feller semigroup associated with the
Langevin dynamics, which solves the Kramers—Fokker—Planck equation. The
accurate estimates for the exponential decay of such semigroups with
parameter-dependent non-self-adjoint generators obtained by the author substantially
involve the theory of pseudo-spectrum.

The theory of pseudo-spectrum reappears in Chapter 16 where Michael Overton
gives a broad survey of recent achievements in stability optimization for polynomials
and matrices. The optimization problems discussed in this chapter typically lead to
optimizers that are polynomials with multiple roots or matrices with non-derogatory
multiple eigenvalues. The higher their multiplicity, the more these multiple roots or
eigenvalues are sensitive to small perturbations; . furthermore, computing these
minimizers numerically is difficult. Instead of optimizing eigenvalues it is proposed
to consider optimization of the pseudo-spectral radius and pseudo-spectral abscissa,
which is computationally less difficult than for the spectral radius and spectral
abscissa.
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In Chapter 17, Dmitry Pelinovsky returns to the index theory and proves the index
theorem in a rather general setting motivated by the problems of stability of nonlinear
waves in KdV-type evolution equations. The directions leading to further extensions
of this result are pointed out.

In the final Chapter 18, Zensho Yoshida and Philip Morrison describe several
facets of noncanonical Hamiltonian systems, namely, the Poisson operator (field
tensor) of a noncanonical Hamiltonian system has a non-trivial kernel (and thus, a
cokernel) that foliates the phase space (Poisson manifold), imposing topological
constraints on the dynamics. When we can “integrate” the kernel of the Poisson
operator to construct Casimir elements, the Casimir leafs foliate the Poisson
manifold and, then, the effective energy is the energy-Casimir functional. The theory
is applied to the tearing-mode instability, where a tearing mode is regarded as an
equilibrium point on a helical-flux Casimir leaf. As long as the helical-flux is
constrained, the tearing mode cannot grow. However, it is shown that a singular
perturbation that allows the system to change the helical flux can cause a tearing
mode to grow if it has an excess energy with respect to a fiducial energy of the
Beltrami equilibrium at the bifurcation point.

Oleg N. KIRILLOV
Dmitry E. PELINOVSKY
October 2013




Chapter 1

Surprising Instabilities of Simple
Elastic Structures

In this chapter, examples of structures buckling in tension are presented, where no
compressed elements are present, slightly different from those previously proposed
by the authors. These simple structures exhibit interesting postcritical behaviors; for
instance, multiple configurations of vanishing external force are evidenced in one
case. Flutter instability as induced by dry friction is also considered in the Ziegler
pendulum, with the same arrangement presented by Bigoni and Noselli [BIG 11], but
now considering the dynamical effects due to the mass of the wheel, which was
previously neglected. It is shown that, for the values of rotational inertia pertinent to
our experimental setup, this effect does not change the overall behavior, so that
previous results remain fully confirmed.

1.1. Introduction

The first example of an elastic structure buckling for a tensile dead load, without
elements subject to compression, has been provided by Zaccaria et al. [ZAC 11].
This finding opens new possibilities in the design of compliant structures. In this
chapter, we present a single-degree-of-freedom structure (different from — and
slightly generalizing — that found by [ZAC 11]), an example that shows that the
previously investigated systems are elements of a broad set of structures behaving in
a, perhaps, “unexpected way”. Moreover, we present a simple generalization of a
single-degree-of-freedom system, further revealing the effects of the constraint’s

Chapter written by Davide BIGONI, Diego MISSERONI, Giovanni NOSELLI and
Daniele ZACCARIA.
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curvature analyzed by Bigoni ef al. [BIG 12b]. The presence of an additional spring
has an important effect on the post-critical behavior, so that two configurations (in
addition to the trivial one) corresponding to a null external force are found.

Finally, we reconsider the frictional instability setup analyzed by Bigoni and
Noselli [BIG 11], where a follower tangential load is transmitted by friction at a
freely rotating wheel mounted at the end of a Ziegler pendulum [ZIE 77]. The
application of a follower tangential load to a structure was a problem previously
unsolved [ELI 05, KOI 96], but important from both a theoretical (see, for
instance, [KIR 10]) and applicative point of view (for instance, to energy
harvesting [DOA 11]). Within the same setting considered by Bigoni and
Noselli [BIG 11], we now analyze the effects on dynamics of the inertia of the wheel
and we show that, for the values of inertia pertinent to the experimental setting used,
‘these effects are negligible, so that previous results are now fully confirmed.

1.2. Buckling in tension

Structures buckling under tensile dead loading (without elements subject to
compression) were discovered by Zaccaria et al. [ZAC 11], who pointed out the
simple example of the single-degree-of-freedom system as shown in Figure 1.1.

They also developed the concept by replacing the rigid rods with deformable
elements. Though the finding by Zaccaria et al. [ZAC 11] might seem an isolated
case, we state, on the contrary, that a broad class of structures buckling in tension can
be invented. To substantiate this statement, we provide, as an example, the new
single-degree-of-freedom system as shown in Figure 1.2, where two rigid rods are
connected through a roller constrained to slide orthogonally to the left rod.

For this structure, bifurcation load and equilibrium paths can be calculated by
considering the bifurcation mode illustrated in Figure 1.2 and defined by the rotation
angle ¢. The elongation of the system and the total potential energy are, respectively,

Azl(l 1), W(.;a):%w?-m( : -1), (1.1]

COos ¢ Ccos ¢

so that the force at equilibrium satisfies

k¢ cos®o
F = ~tand [1.2]
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Figure 1.1. A single-degree-of-freedom structural model showing bifurcation
under tensile dead loading, where two rigid rods are connected through a

slider [ZAC 11]
o trivial solution A
ko, i .

DL\ ym=} > T $,=0°, perfect system 11.0

i 108
&
’ {06 =

= e 104

d {02
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0 15 30 60 90
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Figure 1.2. Bifurcation of a single-degree-of-freedom elastic system under tensile dead loading
(the rods of length | are rigid and connected through a roller constrained to smoothly slide
along the line orthogonal to the rigid rod on the left). A rotational elastic spring of stiffness k,
attached to the hinge on the left, provides the elastic stiffness. The bifurcation diagram showing
bifurcation and softening in tension is reported on the right, where the angle ¢o = {1°,10°}
denotes an initial imperfection
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Analysis of the second-order derivative of the strain energy reveals that the trivial
solution is stable up to the critical load F,.. = k/I, while the non-trivial path,
evidencing softening, is unstable. For an imperfect system, characterized by an initial
inclination of the rods ¢, we obtain

1
W (4, ¢0) = Qk(d)-qso)"‘—ﬂ( . : )

cos¢  cosgg

_ k(¢ — o) cos® ¢
ke Ising ?

[1.3]

so that the force—rotation relation, shown by the dashed line in Figure 1.2 for ¢ = 1°
and ¢ = 10°, is obtained.

1.3. The effect of constraint’s curvature

The strong effects related to the curvature of the profile on which a structure end
is constrained to slide have been highlighted by Bigoni ef al. [BIG 12b], who showed
how to exploit a constraint to induce two critical loads (one in tension and one in
compression) in a single-degree-of-freedom elastic structure. This structure, as shown
in Figure 1.3, can be easily generalized by including an additional elastic spring on
the hinge sliding along the profile, as shown in Figure 1.4.

In this structure, the constraint is assumed to be smooth and described in the z ;-5
reference system as zo = [ f(1), withy = 2, /I € [0,1] and f'(0) = 0.

Bifurcation loads can be calculated by considering a deformed mode defined by
the rotation angle ¢, assumed to be positive when clockwise. The potential energy of
the system is

i R |
W(g) = §k1¢2 - §k26(¢)2 — Flcos¢ — f(sing)], [1.4]
so that the axial force at equilibrium becomes

kit kB(6)B(9)
I[sin ¢ + cos ¢ f'(sin )]

[1.5]
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Figure 1.3. Post-critical behavior in tension of a single-degree-of-freedom
structure. The structure has two critical loads, one in tension and one in
compression [BIG 12b]

When the profile of the constraint is circular, with radius R, and dimensionless
signed curvature ¥ = f”/[1+ (f')?]*/? = £1/R,. as shown in the inset of Figures 1.5
and 1.6, the axial load at equilibrium satisfies

Fe_ : 1 - x2sin’ ¢ ‘ -
Isin ¢(¥ cos ¢ + /1 — x2sin® ¢)
ko [d) +sin"!(Y sing) — 7 H{fo)]

lsin ¢

[1.6]
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where H denotes the Heaviside step function. Since 3(¢) = — tan™'[f’(sin ¢)] — ¢,
the critical load of the system is

kitk 14 f(0))
U1+ £(0)]

Fer = [1.7]

where f”(0) = X(0) is the signed curvature at ¢ = 0.

x,=1 f(ll!)

Figure 1.4. A single-degree-of-freedom structure with a linear-elastic hinge
constrained to slide along a generic profile at the right end and a rotational
linear-elastic spring at the left end

For an imperfect system, characterized by an initial inclination of the rod ¢, the
potential energy becomes

W(6) =5k(9 — 60)? + 5k [B(6) ~ Bl0)]” +

[1.8]
— Fl[cos¢ — f(sin ) — cos ¢p + f(sin ¢p)] ,
so that the axial force at equilibrium is
k10— d0) + ka [B(6) — A(d0)] B(9) o)
l[sin ¢ + cos ¢ f’(sin ¢)] ’ ’
which for a circular profile becomes
Fe__ R@=-d0)V1-Fsin®6
Isin ¢(X cos ¢ + /1 — x2sin® ¢) 0
[1.10]

k2 [¢ — ¢o + sin ™! (X sin @) + sign(X ¢) sin~ ! (X sin é0) — ﬂH(fqb)]
Isin¢
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Equation [1.10] has been used for ¥ = 44, with an “S-shaped” constraint (so that
X is discontinuous at ¢ = 0), to obtain the results shown in Figures 1.5 and 1.6.
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Figure 1.5. The force versus end displacement behavior of a
single-degree-of-freedom structure, with an “S-shaped” constraint, Y = 4
and kz /k1 = 0.01, evidencing two buckling loads, one compressive and one
tensile. Note the four points where the force vanishes
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Figure 1.6. The force versus end displacement behavior of a
single-degree-of-freedom structure, with an “S-shaped™ constraint, Y = +4 and
ka/k1 = 0.5, evidencing two buckling loads, one compressive and one tensile.
Note that at points labelled “2" and “5", the external force does not vanish



8  Nonlinear Physical Systems

1.4. The Ziegler pendulum made unstable by Coulomb friction

The first experimental evidence of flutter and divergence instability related to dry
friction has recently been provided by Bigoni and Noselli [BIG 11]. In their
experimental study, essentially based on the Ziegler’s double pendulum [ZIE 77],
Coulomb friction was exploited in order to provide the system with a tangential
follower force of frictional origin. This goal was achieved by endowing the double
pendulum with a freely rotating wheel, constrained to slide with friction on a
horizontal plate (see Figure 1.7 for the experimental setting and Figure 1.8 for a
sequence of images revealing flutter instability).

Figure 1.7. The experimental setting used by Bigoni and Noselli [BIG 11] to show the
connection between Coulomb friction and dynamic instabilities such as flutter and divergence.
A Ziegler double pendulum is endowed at its tip with a freely rotating wheel, constrained to
slide on a horizontal plate and providing the system with a follower force of frictional origin

Note that, to generate a force of the frictional type, a transversal reaction between
plate and wheel is needed, which during the experiments was created by hanging a
dead weight W on the left of the structure, used as a lever.

In their experimental study, Bigoni and Noselli [BIG 11] analyzed the stability of
the double pendulum using the five different wheels, as shown in Figure 1.9; however,
in their numerical analyses, the wheel was assumed to be massless, so the aim of this
section is to show the effects on the system’s dynamic of a heavy wheel.
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Figure 1.8. A sequence of images (taken from a movie recorded with a Sony
handycam at 25 frames per second) of the structure shown in Figure 1.7 and
exhibiting flutter instability. The whole sequence of images was recorded in
0.40 s and the time interval between two images was 0.08 s

Figure 1.9. The five different wheels used in the experimental tests by Bigoni and
Noselli [BIG 11]. (1) Aluminum wheel with V-shaped cross-section, external diameter 15 mm,
thickness 5mm, weight 3 g; (2) cylindrical steel wheel, external diameter 25 mm, thickness
5mm, weight 18 g; (3) cyvlindrical steel wheel, external diameter 25 mm, thickness 6 mm weight
22g; (4) steel wheel with V-shaped cross-section, external diameter 25 mm, thickness 6 mm,
weight 17 g; (5) eylindrical steel wheel, external diameter 25 mm, thickness 10 mm, weight 36 g

When the mass of the wheel is taken into account, this is subject to a radial (e, =
COS (v7 €] +8in v, ey) force P and to a tangential (e; = — sin a; €1 + cos ap ey) force
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T applied at the contact point with the moving plate as shown in Figure 1.10. These
forces can be expressed in component form as

P=—-Pcosagze; — Psinasg es, "
[1.11]
T =—-Tsinase; +Tcosases.

where the two scalar quantities P and 7" have been introduced. Note that P and T are
positive quantities when the forces acting on the wheel are directed as in Figure 1.10,
and, in general, their absolute values equal to |P| and |T|, respectively.

The assumption of Coulomb friction at the contact point between the wheel and
the plate allows us to write

sign(Cp)v/(a R)2 — T2 if C5#0,

P={ [~V RE-T%, Vs RE-T2| it G5 =0, Ch+dsry=0,  [112]
0 if C5 =0, CL+asry#0,

where R is the vertical reaction applied at the wheel and orthogonal to the moving
plane, 15 and y4 are the static and dynamic friction coefficients, respectively, and C})

and C’; are the radial and the tangential components of the velocity of the wheel with
respect to the plate, which can be expressed in the forms
O; = vp cosap — Iy sin(a; — ag)dy ,
; [1.13]
Cp = —vp sinag + 1y cos(ay — ag)dy + ladra .
The system is characterized by three-degrees-of-freedom, denoted by a1, ao and
a3, and the latter representing the rotation of the wheel about its axis (see Figure 1.10).
Moreover, m.,,, 1, and h,, are the mass, the radius and the thickness of the wheel.

The principle of virtual works, denoting the scalar product with *“ - ”, is written as
P-0C+T-(0C+rydaze) — (kray + Bi1dq)da; +
— {k‘z(ﬂ‘z —_ [11) + ,82(&2 — )1(50)_ — 5(11) +
x i z [1.14]
—m1Gy-0G] — MGy -Gy — m, C-6C +

— Iz @10y — Iz Gpday — 1, Gr3bag — Ioys Gobary = 0,

holding for every virtual displacement §C, §G; and 6G, functions of the virtual
rotations devy, das and dexs.
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> el

Figure 1.10. A three-degree-of-freedom system subject to a tangential follower force P and
orthogonal follower force T provided by a freely rotating wheel sliding with friction on a plate,
which moves with velocity of modulus vy. The two rods, of linear mass density p, are rigid and
connected through two rotational springs of stiffness k1 and ko and viscosity 1 and 32. The
wheel has mass M., radius v, and thickness h.,

In equation [1.14], m,, ms and m,, are, respectively, the mass of the rod of length
l1, the mass of the rod of length [; and the mass of the wheel, whereas I3, I23, I3
and I, are, respectively, the principal moment of inertia of the two rods about the
vertical axis and the principal moment of inertia of the wheel about the vertical axis
and its rotation axis.

Now imposing condition [1.14] and invoking the arbitrariness of deavj, dap and

davz, we arrive at the system of three nonlinear differential equations, governing the
dynamics of the system

[ [Liz + 2(my1 /4 + mg + My ) G + Lila(ma/2 4+ my,) cos(ay + az)ds +
+ Brén + B2(d1 — d2) + krog + ka(an — az) +

+ lila(ma /2 + my,) sin(ay — ag)ds +

—[4[T cos(a; — ap) + Psin(a; — az)] =0,

[1.15]
lila(ma/2 + my,) cos(ar — az)dy + [Tos + Lz + 13(m2/4 + my,)|d2 +

— Ba2(d1 — d2) — ka(a — az) +

— lila(ma/2 4+ my,) sin(a; — ag)d? — I, T =0,

IwrdS_T‘wT:D.

.
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We note from equations [1.12]-[1.15] that a;, as, a3, P and T are the five
unknowns, function of time. Moreover, in the case in which sliding between the
wheel and the plate is active, a situation corresponding to Cj # 0, one additional
condition has to be imposed in order to find the solution, namely, that the force
applied to the wheel, P + T, must be directed parallel, but opposite to the relative
plate/wheel velocity, g 2> Up €1 + (3 Ty, €, a condition yielding

P vy cos g — 1y sin(ay — ag)dy
L - _ _ = [1.16]
T  wpsinag — ) cos(ag — az)dy — ladry — 1y i3

The nonlinear system of equations has been numerically solved, and for this
purpose the function “NDSolve” of Mathematica 6.0 has been used, together with a
viscous smooth approximation of the friction law [1.12] (see [ODE 85, BIG 11]).

In Figure 1.11, a comparison is found (in terms of «; and as) between the
numerical results for the case of a massless (solid curves) and a heavy (dashed curve)
wheel. These results have been obtained for a dead weight W corresponding to the
onset of flutter instability and assuming wheel number 3 as shown in Figure 1.9.
From the results shown in Figure 1.11, we can conclude that the inertia of the wheel
only slightly contributes to the motion of the system and can therefore be neglected.

0.5 ....... SR L — 1-“ ey gy T
| -==- ¢} - heavy wheel 1 -==- Oy - heavy wheel

| —— Oy - massless wheel —— 0.3 - massless wheel

0.25 05
g
£ 0.0 0.0
o]
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05l i i .
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—
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Figure 1.11. The instantaneous rotations c«y and oo of the Ziegler pendulum'’s rods,
numerically obtained as functions of time, for massless (solid curves) and heavy (dashed curves,
the assumed wheel is number 3 in Figure 1.9) wheels. The results have been obtained for
a dead load W at the onset of flutter, a plate velocity v, = 50mm/s and initial conditions
] = Qg = 1°

1.5. Conclusions

Instability in tension, effects of a constraint’s curvature and follower loads induced
by dry Coulomb friction are new phenomena that open an important perspective in the
design of structures that can become unstable at prescribed loads.
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New examples of structures exhibiting buckling under tensile dead loading have
been given, slightly generalizing previous findings by the authors and showing that a
broad set of systems behaving in a counterintuitive and innovative way can be invented
and practically realized.

The effects of a constraint’s curvature have been further investigated: we have
shown that the introduction on a curved constraint profile of an elastic, torsional
spring strongly affects the post-critical behavior of the system and may lead to
multiple equilibrium configurations, corresponding to an external force of zero
magnitude.

Finally, we have presented also a detailed analysis of flutter instability as induced
by dry friction in the Ziegler double pendulum. In this system, dynamical effects
related to a heavy frictional constraint have been determined. The results show that
these are negligible for the values of a constraint’s inertia pertinent to our
experimental setting, but may become interesting in other situations.

The structures considered in our study can be combined to design flexible systems
and artificial materials, which may find broad applications, even at the micro- and
nanoscale.
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